隔室尖峰神经元模型的增量学习策略

IF 1 Q4 OPTICS
A. M. Korsakov, T. T. Isakov, A. V. Bakhshiev
{"title":"隔室尖峰神经元模型的增量学习策略","authors":"A. M. Korsakov,&nbsp;T. T. Isakov,&nbsp;A. V. Bakhshiev","doi":"10.3103/S1060992X23060073","DOIUrl":null,"url":null,"abstract":"<p>The article presents a method for implementing incremental learning on a compartmental spiking neuron model. The training of one neuron with the possibility of forming new classes was chosen as an incremental learning scenario. During the training, only a new sample was used, without knowledge of the entire previous training samples. The results of experiments on the Iris dataset are presented, demonstrating the applicability of the chosen strategy for incremental learning on a compartmental spiking neuron model.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"32 2","pages":"S237 - S243"},"PeriodicalIF":1.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategy of Incremental Learning on a Compartmental Spiking Neuron Model\",\"authors\":\"A. M. Korsakov,&nbsp;T. T. Isakov,&nbsp;A. V. Bakhshiev\",\"doi\":\"10.3103/S1060992X23060073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The article presents a method for implementing incremental learning on a compartmental spiking neuron model. The training of one neuron with the possibility of forming new classes was chosen as an incremental learning scenario. During the training, only a new sample was used, without knowledge of the entire previous training samples. The results of experiments on the Iris dataset are presented, demonstrating the applicability of the chosen strategy for incremental learning on a compartmental spiking neuron model.</p>\",\"PeriodicalId\":721,\"journal\":{\"name\":\"Optical Memory and Neural Networks\",\"volume\":\"32 2\",\"pages\":\"S237 - S243\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Memory and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1060992X23060073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X23060073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种在间隔尖峰神经元模型上实现增量学习的方法。选择具有形成新类可能性的单个神经元的训练作为增量学习场景。在训练过程中,只使用一个新样本,而不知道之前的全部训练样本。本文给出了Iris数据集的实验结果,证明了所选策略在区隔尖峰神经元模型上的增量学习的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Strategy of Incremental Learning on a Compartmental Spiking Neuron Model

Strategy of Incremental Learning on a Compartmental Spiking Neuron Model

The article presents a method for implementing incremental learning on a compartmental spiking neuron model. The training of one neuron with the possibility of forming new classes was chosen as an incremental learning scenario. During the training, only a new sample was used, without knowledge of the entire previous training samples. The results of experiments on the Iris dataset are presented, demonstrating the applicability of the chosen strategy for incremental learning on a compartmental spiking neuron model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
25
期刊介绍: The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信