{"title":"仿射方程曲线上的代数点 \\(y^2 =x(x-3)(x-4)(x-6)(x-7)\\)","authors":"Boubacar Sidy Balde, Oumar Sall","doi":"10.1007/s13370-023-01128-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we use the finiteness of the Mordell–Weil group of the Jacobian variety of the curve <span>\\(\\mathcal {C}:y^2 =x(x-3)(x-4)(x-6)(x-7)\\)</span> and the Riemann Roch spaces to determine explicitly the set of algebraic points of given degree <i>l</i> over <span>\\(\\mathbb {Q}\\)</span> on the curve <span>\\(\\mathcal {C}\\)</span>. The results obtained extend the work of Gordon and Grant, who determined the Mordell–Weil group <span>\\(J(\\mathbb {Q})\\)</span> and the set of rational points on the same curve.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic points on the curve of affine equation \\\\(y^2 =x(x-3)(x-4)(x-6)(x-7)\\\\)\",\"authors\":\"Boubacar Sidy Balde, Oumar Sall\",\"doi\":\"10.1007/s13370-023-01128-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we use the finiteness of the Mordell–Weil group of the Jacobian variety of the curve <span>\\\\(\\\\mathcal {C}:y^2 =x(x-3)(x-4)(x-6)(x-7)\\\\)</span> and the Riemann Roch spaces to determine explicitly the set of algebraic points of given degree <i>l</i> over <span>\\\\(\\\\mathbb {Q}\\\\)</span> on the curve <span>\\\\(\\\\mathcal {C}\\\\)</span>. The results obtained extend the work of Gordon and Grant, who determined the Mordell–Weil group <span>\\\\(J(\\\\mathbb {Q})\\\\)</span> and the set of rational points on the same curve.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-023-01128-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-023-01128-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Algebraic points on the curve of affine equation \(y^2 =x(x-3)(x-4)(x-6)(x-7)\)
In this work, we use the finiteness of the Mordell–Weil group of the Jacobian variety of the curve \(\mathcal {C}:y^2 =x(x-3)(x-4)(x-6)(x-7)\) and the Riemann Roch spaces to determine explicitly the set of algebraic points of given degree l over \(\mathbb {Q}\) on the curve \(\mathcal {C}\). The results obtained extend the work of Gordon and Grant, who determined the Mordell–Weil group \(J(\mathbb {Q})\) and the set of rational points on the same curve.