f集收缩多映射的不动点理论及其在整包含系统上的应用

IF 0.9 Q2 MATHEMATICS
Maha Belhadj, Mohamed Boumaiza
{"title":"f集收缩多映射的不动点理论及其在整包含系统上的应用","authors":"Maha Belhadj,&nbsp;Mohamed Boumaiza","doi":"10.1007/s13370-023-01146-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove some generalizations of Darbo’s fixed point theorem for multivalued mappings by considering a measure of noncompactness which does not necessarily have the maximum property. Moreover, we prove some coupled fixed point theorems for multivalued mappings. Our results generalize, prove and extend well-known results in the subject. An application to solve a nonlinear system of integral inclusions is given.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fixed point theory for F-set-contraction multimaps and application to a system of integral inclusions\",\"authors\":\"Maha Belhadj,&nbsp;Mohamed Boumaiza\",\"doi\":\"10.1007/s13370-023-01146-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we prove some generalizations of Darbo’s fixed point theorem for multivalued mappings by considering a measure of noncompactness which does not necessarily have the maximum property. Moreover, we prove some coupled fixed point theorems for multivalued mappings. Our results generalize, prove and extend well-known results in the subject. An application to solve a nonlinear system of integral inclusions is given.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-023-01146-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-023-01146-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文通过考虑一个不一定具有极大值性质的非紧测度,证明了多值映射的Darbo不动点定理的一些推广。此外,我们还证明了多值映射的一些耦合不动点定理。我们的结果概括、证明和扩展了这门学科中众所周知的结果。给出了求解非线性积分包含系统的一个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fixed point theory for F-set-contraction multimaps and application to a system of integral inclusions

In this paper, we prove some generalizations of Darbo’s fixed point theorem for multivalued mappings by considering a measure of noncompactness which does not necessarily have the maximum property. Moreover, we prove some coupled fixed point theorems for multivalued mappings. Our results generalize, prove and extend well-known results in the subject. An application to solve a nonlinear system of integral inclusions is given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信