{"title":"使用Hadamard矩阵构建混合水平筛选设计","authors":"Bo Hu , Dongying Wang , Fasheng Sun","doi":"10.1016/j.jspi.2023.106131","DOIUrl":null,"url":null,"abstract":"<div><p>Modern experiments typically involve a very large number of variables. Screening designs allow experimenters to identify active factors in a minimum number of trials. To save costs, only low-level factorial designs are considered for screening experiments, especially two- and three-level designs. In this article, we provide a systematic method to construct screening designs that contain both two- and three-level factors based on Hadamard matrices with the fold-over structure. The proposed designs have good performance in terms of D-optimal and A-optimal criteria, and the estimates of the main effects are unbiased by the second-order effects, making them very suitable for screening experiments. Besides, some theoretical results on D- and A-optimality are obtained as a by-product.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of mixed-level screening designs using Hadamard matrices\",\"authors\":\"Bo Hu , Dongying Wang , Fasheng Sun\",\"doi\":\"10.1016/j.jspi.2023.106131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Modern experiments typically involve a very large number of variables. Screening designs allow experimenters to identify active factors in a minimum number of trials. To save costs, only low-level factorial designs are considered for screening experiments, especially two- and three-level designs. In this article, we provide a systematic method to construct screening designs that contain both two- and three-level factors based on Hadamard matrices with the fold-over structure. The proposed designs have good performance in terms of D-optimal and A-optimal criteria, and the estimates of the main effects are unbiased by the second-order effects, making them very suitable for screening experiments. Besides, some theoretical results on D- and A-optimality are obtained as a by-product.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375823001003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375823001003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Construction of mixed-level screening designs using Hadamard matrices
Modern experiments typically involve a very large number of variables. Screening designs allow experimenters to identify active factors in a minimum number of trials. To save costs, only low-level factorial designs are considered for screening experiments, especially two- and three-level designs. In this article, we provide a systematic method to construct screening designs that contain both two- and three-level factors based on Hadamard matrices with the fold-over structure. The proposed designs have good performance in terms of D-optimal and A-optimal criteria, and the estimates of the main effects are unbiased by the second-order effects, making them very suitable for screening experiments. Besides, some theoretical results on D- and A-optimality are obtained as a by-product.