{"title":"调整节点地模型以预测和监测COVID-19足迹和传播风险","authors":"Jiali Zhou, Mingzhi Zhou, Jiangping Zhou, Zhan Zhao","doi":"10.1016/j.commtr.2023.100110","DOIUrl":null,"url":null,"abstract":"<div><p>The node–place model has been widely used to classify and evaluate transit stations, which sheds light on individuals’ travel behaviors and supports urban planning through effectively integrating land use and transportation development. This study adapts this model to investigate whether and how node, place, and mobility would be associated with the transmission risks and presences of the local COVID-19 cases in a city. Moreover, the unique metric drawn from detailed visit history of the infected, i.e., the COVID-19 footprints, is proposed and exploited. This study then empirically uses the adapted model to examine the station-level factors affecting the local COVID-19 footprints. The model accounts for traditional measures of the node and place as well as actual human mobility patterns associated with the node and place. It finds that stations with high node, place, and human mobility indices normally have more COVID-19 footprints in proximity. A multivariate regression is fitted to see whether and to what degree different indices and indicators can predict the COVID-19 footprints. The results indicate that many of the place, node, and human mobility indicators significantly impact the concentration of COVID-19 footprints. These are useful for policy-makers to predict and monitor hotspots for COVID-19 and other pandemics’ transmission.</p></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":null,"pages":null},"PeriodicalIF":12.5000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772424723000215/pdfft?md5=63b3570764926b5829d368e067f2aff0&pid=1-s2.0-S2772424723000215-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Adapting node–place model to predict and monitor COVID-19 footprints and transmission risks\",\"authors\":\"Jiali Zhou, Mingzhi Zhou, Jiangping Zhou, Zhan Zhao\",\"doi\":\"10.1016/j.commtr.2023.100110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The node–place model has been widely used to classify and evaluate transit stations, which sheds light on individuals’ travel behaviors and supports urban planning through effectively integrating land use and transportation development. This study adapts this model to investigate whether and how node, place, and mobility would be associated with the transmission risks and presences of the local COVID-19 cases in a city. Moreover, the unique metric drawn from detailed visit history of the infected, i.e., the COVID-19 footprints, is proposed and exploited. This study then empirically uses the adapted model to examine the station-level factors affecting the local COVID-19 footprints. The model accounts for traditional measures of the node and place as well as actual human mobility patterns associated with the node and place. It finds that stations with high node, place, and human mobility indices normally have more COVID-19 footprints in proximity. A multivariate regression is fitted to see whether and to what degree different indices and indicators can predict the COVID-19 footprints. The results indicate that many of the place, node, and human mobility indicators significantly impact the concentration of COVID-19 footprints. These are useful for policy-makers to predict and monitor hotspots for COVID-19 and other pandemics’ transmission.</p></div>\",\"PeriodicalId\":100292,\"journal\":{\"name\":\"Communications in Transportation Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772424723000215/pdfft?md5=63b3570764926b5829d368e067f2aff0&pid=1-s2.0-S2772424723000215-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Transportation Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772424723000215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Transportation Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772424723000215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Adapting node–place model to predict and monitor COVID-19 footprints and transmission risks
The node–place model has been widely used to classify and evaluate transit stations, which sheds light on individuals’ travel behaviors and supports urban planning through effectively integrating land use and transportation development. This study adapts this model to investigate whether and how node, place, and mobility would be associated with the transmission risks and presences of the local COVID-19 cases in a city. Moreover, the unique metric drawn from detailed visit history of the infected, i.e., the COVID-19 footprints, is proposed and exploited. This study then empirically uses the adapted model to examine the station-level factors affecting the local COVID-19 footprints. The model accounts for traditional measures of the node and place as well as actual human mobility patterns associated with the node and place. It finds that stations with high node, place, and human mobility indices normally have more COVID-19 footprints in proximity. A multivariate regression is fitted to see whether and to what degree different indices and indicators can predict the COVID-19 footprints. The results indicate that many of the place, node, and human mobility indicators significantly impact the concentration of COVID-19 footprints. These are useful for policy-makers to predict and monitor hotspots for COVID-19 and other pandemics’ transmission.