Recomb-Mix快速准确的本地祖先推断。

Yuan Wei, Degui Zhi, Shaojie Zhang
{"title":"Recomb-Mix快速准确的本地祖先推断。","authors":"Yuan Wei, Degui Zhi, Shaojie Zhang","doi":"10.1101/2023.11.17.567650","DOIUrl":null,"url":null,"abstract":"<p><p>The availability of large genotyped cohorts brings new opportunities for revealing the high-resolution genetic structure of admixed populations via local ancestry inference (LAI), the process of identifying the ancestry of each segment of an individual haplotype. Though current methods achieve high accuracy in standard cases, LAI is still challenging when reference populations are more similar (e.g., intra-continental), when the number of reference populations is too numerous, or when the admixture events are deep in time, all of which are increasingly unavoidable in large biobanks. Here, we present a new LAI method, Recomb-Mix. Recomb-Mix integrates the elements of existing methods of the site-based Li and Stephens model and introduces a new graph collapsing trick to simplify counting paths with the same ancestry label readout. Through comprehensive benchmarking on various simulated datasets, we show that Recomb-Mix is more accurate than existing methods in diverse sets of scenarios while being competitive in terms of resource efficiency. We expect that Recomb-Mix will be a useful method for advancing genetics studies of admixed populations.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680832/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fast and accurate local ancestry inference with Recomb-Mix.\",\"authors\":\"Yuan Wei, Degui Zhi, Shaojie Zhang\",\"doi\":\"10.1101/2023.11.17.567650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The availability of large genotyped cohorts brings new opportunities for revealing the high-resolution genetic structure of admixed populations via local ancestry inference (LAI), the process of identifying the ancestry of each segment of an individual haplotype. Though current methods achieve high accuracy in standard cases, LAI is still challenging when reference populations are more similar (e.g., intra-continental), when the number of reference populations is too numerous, or when the admixture events are deep in time, all of which are increasingly unavoidable in large biobanks. Here, we present a new LAI method, Recomb-Mix. Recomb-Mix integrates the elements of existing methods of the site-based Li and Stephens model and introduces a new graph collapsing trick to simplify counting paths with the same ancestry label readout. Through comprehensive benchmarking on various simulated datasets, we show that Recomb-Mix is more accurate than existing methods in diverse sets of scenarios while being competitive in terms of resource efficiency. We expect that Recomb-Mix will be a useful method for advancing genetics studies of admixed populations.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680832/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.11.17.567650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.11.17.567650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型基因型队列的可用性为揭示混合群体的高分辨率遗传结构带来了新的机会,通过本地祖先推断(LAI),确定单个单倍型每个片段的祖先的过程。虽然目前的方法在标准情况下获得了很高的准确性,但当参考种群更相似时(例如,大陆内),当参考种群数量太多时,或者当混合事件发生时间较深时,LAI仍然具有挑战性,所有这些在大型生物库中都越来越不可避免。本文提出了一种新的LAI方法Recomb-Mix。Recomb-Mix采用基于Li和Stephens经典模型的常用的基于站点的公式,集成了现有方法的元素,并引入了新的图折叠,以简化具有相同祖先标签读出的计数路径。通过对各种模拟数据集的综合基准测试,我们表明Recomb-Mix在不同场景下比现有方法更准确,同时在资源效率方面具有竞争力。我们期望Recomb-Mix将成为推进混合群体遗传学研究的一种有用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and accurate local ancestry inference with Recomb-Mix.

The availability of large genotyped cohorts brings new opportunities for revealing the high-resolution genetic structure of admixed populations via local ancestry inference (LAI), the process of identifying the ancestry of each segment of an individual haplotype. Though current methods achieve high accuracy in standard cases, LAI is still challenging when reference populations are more similar (e.g., intra-continental), when the number of reference populations is too numerous, or when the admixture events are deep in time, all of which are increasingly unavoidable in large biobanks. Here, we present a new LAI method, Recomb-Mix. Recomb-Mix integrates the elements of existing methods of the site-based Li and Stephens model and introduces a new graph collapsing trick to simplify counting paths with the same ancestry label readout. Through comprehensive benchmarking on various simulated datasets, we show that Recomb-Mix is more accurate than existing methods in diverse sets of scenarios while being competitive in terms of resource efficiency. We expect that Recomb-Mix will be a useful method for advancing genetics studies of admixed populations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信