{"title":"倾向得分纳入自适应设计方法时,纳入现实世界的数据。","authors":"Nelson Lu, Wei-Chen Chen, Heng Li, Changhong Song, Ram Tiwari, Chenguang Wang, Yunling Xu, Lilly Q Yue","doi":"10.1002/pst.2347","DOIUrl":null,"url":null,"abstract":"<p><p>The propensity score-integrated composite likelihood (PSCL) method is one method that can be utilized to design and analyze an application when real-world data (RWD) are leveraged to augment a prospectively designed clinical study. In the PSCL, strata are formed based on propensity scores (PS) such that similar subjects in terms of the baseline covariates from both the current study and RWD sources are placed in the same stratum, and then composite likelihood method is applied to down-weight the information from the RWD. While PSCL was originally proposed for a fixed design, it can be extended to be applied under an adaptive design framework with the purpose to either potentially claim an early success or to re-estimate the sample size. In this paper, a general strategy is proposed due to the feature of PSCL. For the possibility of claiming early success, Fisher's combination test is utilized. When the purpose is to re-estimate the sample size, the proposed procedure is based on the test proposed by Cui, Hung, and Wang. The implementation of these two procedures is demonstrated via an example.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Propensity score-incorporated adaptive design approaches when incorporating real-world data.\",\"authors\":\"Nelson Lu, Wei-Chen Chen, Heng Li, Changhong Song, Ram Tiwari, Chenguang Wang, Yunling Xu, Lilly Q Yue\",\"doi\":\"10.1002/pst.2347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The propensity score-integrated composite likelihood (PSCL) method is one method that can be utilized to design and analyze an application when real-world data (RWD) are leveraged to augment a prospectively designed clinical study. In the PSCL, strata are formed based on propensity scores (PS) such that similar subjects in terms of the baseline covariates from both the current study and RWD sources are placed in the same stratum, and then composite likelihood method is applied to down-weight the information from the RWD. While PSCL was originally proposed for a fixed design, it can be extended to be applied under an adaptive design framework with the purpose to either potentially claim an early success or to re-estimate the sample size. In this paper, a general strategy is proposed due to the feature of PSCL. For the possibility of claiming early success, Fisher's combination test is utilized. When the purpose is to re-estimate the sample size, the proposed procedure is based on the test proposed by Cui, Hung, and Wang. The implementation of these two procedures is demonstrated via an example.</p>\",\"PeriodicalId\":19934,\"journal\":{\"name\":\"Pharmaceutical Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pst.2347\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2347","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Propensity score-incorporated adaptive design approaches when incorporating real-world data.
The propensity score-integrated composite likelihood (PSCL) method is one method that can be utilized to design and analyze an application when real-world data (RWD) are leveraged to augment a prospectively designed clinical study. In the PSCL, strata are formed based on propensity scores (PS) such that similar subjects in terms of the baseline covariates from both the current study and RWD sources are placed in the same stratum, and then composite likelihood method is applied to down-weight the information from the RWD. While PSCL was originally proposed for a fixed design, it can be extended to be applied under an adaptive design framework with the purpose to either potentially claim an early success or to re-estimate the sample size. In this paper, a general strategy is proposed due to the feature of PSCL. For the possibility of claiming early success, Fisher's combination test is utilized. When the purpose is to re-estimate the sample size, the proposed procedure is based on the test proposed by Cui, Hung, and Wang. The implementation of these two procedures is demonstrated via an example.
期刊介绍:
Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics.
The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.