{"title":"考虑测量误差的基因选择方法。","authors":"Hajoung Lee, Jaejik Kim","doi":"10.1089/cmb.2023.0041","DOIUrl":null,"url":null,"abstract":"<p><p>The analysis of gene expression data has made significant contributions to understanding disease mechanisms and developing new drugs and therapies. In such analysis, gene selection is often required for identifying informative and relevant genes and removing redundant and irrelevant ones. However, this is not an easy task as gene expression data have inherent challenges such as ultra-high dimensionality, biological noise, and measurement errors. This study focuses on the measurement errors in gene selection problems. Typically, high-throughput experiments have their own intrinsic measurement errors, which can result in an increase of falsely discovered genes. To alleviate this problem, this study proposes a gene selection method that takes into account measurement errors using generalized liner measurement error models. The method consists of iterative filtering and selection steps until convergence, leading to fewer false positives and providing stable results under measurement errors. The performance of the proposed method is demonstrated through simulation studies and applied to a lung cancer data set.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"71-82"},"PeriodicalIF":1.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Gene Selection Method Considering Measurement Errors.\",\"authors\":\"Hajoung Lee, Jaejik Kim\",\"doi\":\"10.1089/cmb.2023.0041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The analysis of gene expression data has made significant contributions to understanding disease mechanisms and developing new drugs and therapies. In such analysis, gene selection is often required for identifying informative and relevant genes and removing redundant and irrelevant ones. However, this is not an easy task as gene expression data have inherent challenges such as ultra-high dimensionality, biological noise, and measurement errors. This study focuses on the measurement errors in gene selection problems. Typically, high-throughput experiments have their own intrinsic measurement errors, which can result in an increase of falsely discovered genes. To alleviate this problem, this study proposes a gene selection method that takes into account measurement errors using generalized liner measurement error models. The method consists of iterative filtering and selection steps until convergence, leading to fewer false positives and providing stable results under measurement errors. The performance of the proposed method is demonstrated through simulation studies and applied to a lung cancer data set.</p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\" \",\"pages\":\"71-82\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2023.0041\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0041","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A Gene Selection Method Considering Measurement Errors.
The analysis of gene expression data has made significant contributions to understanding disease mechanisms and developing new drugs and therapies. In such analysis, gene selection is often required for identifying informative and relevant genes and removing redundant and irrelevant ones. However, this is not an easy task as gene expression data have inherent challenges such as ultra-high dimensionality, biological noise, and measurement errors. This study focuses on the measurement errors in gene selection problems. Typically, high-throughput experiments have their own intrinsic measurement errors, which can result in an increase of falsely discovered genes. To alleviate this problem, this study proposes a gene selection method that takes into account measurement errors using generalized liner measurement error models. The method consists of iterative filtering and selection steps until convergence, leading to fewer false positives and providing stable results under measurement errors. The performance of the proposed method is demonstrated through simulation studies and applied to a lung cancer data set.
期刊介绍:
Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics.
Journal of Computational Biology coverage includes:
-Genomics
-Mathematical modeling and simulation
-Distributed and parallel biological computing
-Designing biological databases
-Pattern matching and pattern detection
-Linking disparate databases and data
-New tools for computational biology
-Relational and object-oriented database technology for bioinformatics
-Biological expert system design and use
-Reasoning by analogy, hypothesis formation, and testing by machine
-Management of biological databases