{"title":"一个新的正相关性质及其对一类流行的一致性测度的影响","authors":"Sebastian Fuchs, Marco Tschimpke","doi":"10.1016/j.jmva.2023.105259","DOIUrl":null,"url":null,"abstract":"<div><p>A novel positive dependence property is introduced, called positive measure inducing (PMI for short), being fulfilled by numerous copula classes, including Gaussian, Student <span><math><mi>t</mi></math></span>, Fréchet, Farlie–Gumbel–Morgenstern and Frank copulas; it is conjectured that even all positive quadrant dependent Archimedean copulas meet this property. From a geometric viewpoint, a PMI copula concentrates more mass near the main diagonal than in the opposite diagonal. A striking feature of PMI copulas is that they impose an ordering on a certain class of copula-induced measures of concordance, the latter originating in Edwards et al. (2004) and including Spearman’s rho <span><math><mi>ρ</mi></math></span> and Gini’s gamma <span><math><mi>γ</mi></math></span>, leading to numerous new inequalities such as <span><math><mrow><mn>3</mn><mi>γ</mi><mo>≥</mo><mn>2</mn><mi>ρ</mi></mrow></math></span>. The measures of concordance within this class are estimated using (classical) empirical copulas and the intrinsic construction via empirical checkerboard copulas, and the estimators’ asymptotic behavior is determined. Building upon the presented inequalities, asymptotic tests are constructed having the potential of being used for detecting whether the underlying dependence structure of a given sample is PMI, which in turn can be used for excluding certain copula families from model building. The excellent performance of the tests is demonstrated in a simulation study and by means of a real-data example.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"200 ","pages":"Article 105259"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0047259X23001057/pdfft?md5=f90554c17c7d483e5a17da19024d99eb&pid=1-s2.0-S0047259X23001057-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel positive dependence property and its impact on a popular class of concordance measures\",\"authors\":\"Sebastian Fuchs, Marco Tschimpke\",\"doi\":\"10.1016/j.jmva.2023.105259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel positive dependence property is introduced, called positive measure inducing (PMI for short), being fulfilled by numerous copula classes, including Gaussian, Student <span><math><mi>t</mi></math></span>, Fréchet, Farlie–Gumbel–Morgenstern and Frank copulas; it is conjectured that even all positive quadrant dependent Archimedean copulas meet this property. From a geometric viewpoint, a PMI copula concentrates more mass near the main diagonal than in the opposite diagonal. A striking feature of PMI copulas is that they impose an ordering on a certain class of copula-induced measures of concordance, the latter originating in Edwards et al. (2004) and including Spearman’s rho <span><math><mi>ρ</mi></math></span> and Gini’s gamma <span><math><mi>γ</mi></math></span>, leading to numerous new inequalities such as <span><math><mrow><mn>3</mn><mi>γ</mi><mo>≥</mo><mn>2</mn><mi>ρ</mi></mrow></math></span>. The measures of concordance within this class are estimated using (classical) empirical copulas and the intrinsic construction via empirical checkerboard copulas, and the estimators’ asymptotic behavior is determined. Building upon the presented inequalities, asymptotic tests are constructed having the potential of being used for detecting whether the underlying dependence structure of a given sample is PMI, which in turn can be used for excluding certain copula families from model building. The excellent performance of the tests is demonstrated in a simulation study and by means of a real-data example.</p></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"200 \",\"pages\":\"Article 105259\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0047259X23001057/pdfft?md5=f90554c17c7d483e5a17da19024d99eb&pid=1-s2.0-S0047259X23001057-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X23001057\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23001057","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A novel positive dependence property and its impact on a popular class of concordance measures
A novel positive dependence property is introduced, called positive measure inducing (PMI for short), being fulfilled by numerous copula classes, including Gaussian, Student , Fréchet, Farlie–Gumbel–Morgenstern and Frank copulas; it is conjectured that even all positive quadrant dependent Archimedean copulas meet this property. From a geometric viewpoint, a PMI copula concentrates more mass near the main diagonal than in the opposite diagonal. A striking feature of PMI copulas is that they impose an ordering on a certain class of copula-induced measures of concordance, the latter originating in Edwards et al. (2004) and including Spearman’s rho and Gini’s gamma , leading to numerous new inequalities such as . The measures of concordance within this class are estimated using (classical) empirical copulas and the intrinsic construction via empirical checkerboard copulas, and the estimators’ asymptotic behavior is determined. Building upon the presented inequalities, asymptotic tests are constructed having the potential of being used for detecting whether the underlying dependence structure of a given sample is PMI, which in turn can be used for excluding certain copula families from model building. The excellent performance of the tests is demonstrated in a simulation study and by means of a real-data example.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.