Vladimir Garanzha, Igor Kaporin, Liudmila Kudryavtseva, Francois Protais, Dmitry Sokolov
{"title":"在尺度最优映射的探索中","authors":"Vladimir Garanzha, Igor Kaporin, Liudmila Kudryavtseva, Francois Protais, Dmitry Sokolov","doi":"10.1145/3627102","DOIUrl":null,"url":null,"abstract":"<p>Optimal mapping is one of the longest-standing problems in computational mathematics. It is natural to measure the relative curve length error under map to assess its quality. The maximum of such error is called the quasi-isometry constant, and its minimization is a nontrivial max-norm optimization problem. We present a physics-based quasi-isometric stiffening (QIS) algorithm for the max-norm minimization of hyperelastic distortion. </p><p>QIS perfectly equidistributes distortion over the entire domain for the ground truth test (unit hemisphere flattening) and, when it is not possible, tends to create zones where all cells have the same distortion. Such zones correspond to fragments of elastic material that became rigid under stiffening, reaching the deformation limit. As such, maps built by QIS are related to the de Boor equidistribution principle, which asks for an integral of a certain error indicator function to be the same over each mesh cell. </p><p>Under certain assumptions on the minimization toolbox, we prove that our method can build, in a finite number of steps, a deformation whose maximum distortion is arbitrarily close to the (unknown) minimum. We performed extensive testing: on more than 10,000 domains QIS was reliably better than the competing methods. In summary, we reliably build 2D and 3D mesh deformations with the smallest known distortion estimates for very stiff problems.</p>","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"86 23","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In the Quest for Scale-Optimal Mappings\",\"authors\":\"Vladimir Garanzha, Igor Kaporin, Liudmila Kudryavtseva, Francois Protais, Dmitry Sokolov\",\"doi\":\"10.1145/3627102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Optimal mapping is one of the longest-standing problems in computational mathematics. It is natural to measure the relative curve length error under map to assess its quality. The maximum of such error is called the quasi-isometry constant, and its minimization is a nontrivial max-norm optimization problem. We present a physics-based quasi-isometric stiffening (QIS) algorithm for the max-norm minimization of hyperelastic distortion. </p><p>QIS perfectly equidistributes distortion over the entire domain for the ground truth test (unit hemisphere flattening) and, when it is not possible, tends to create zones where all cells have the same distortion. Such zones correspond to fragments of elastic material that became rigid under stiffening, reaching the deformation limit. As such, maps built by QIS are related to the de Boor equidistribution principle, which asks for an integral of a certain error indicator function to be the same over each mesh cell. </p><p>Under certain assumptions on the minimization toolbox, we prove that our method can build, in a finite number of steps, a deformation whose maximum distortion is arbitrarily close to the (unknown) minimum. We performed extensive testing: on more than 10,000 domains QIS was reliably better than the competing methods. In summary, we reliably build 2D and 3D mesh deformations with the smallest known distortion estimates for very stiff problems.</p>\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":\"86 23\",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3627102\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3627102","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Optimal mapping is one of the longest-standing problems in computational mathematics. It is natural to measure the relative curve length error under map to assess its quality. The maximum of such error is called the quasi-isometry constant, and its minimization is a nontrivial max-norm optimization problem. We present a physics-based quasi-isometric stiffening (QIS) algorithm for the max-norm minimization of hyperelastic distortion.
QIS perfectly equidistributes distortion over the entire domain for the ground truth test (unit hemisphere flattening) and, when it is not possible, tends to create zones where all cells have the same distortion. Such zones correspond to fragments of elastic material that became rigid under stiffening, reaching the deformation limit. As such, maps built by QIS are related to the de Boor equidistribution principle, which asks for an integral of a certain error indicator function to be the same over each mesh cell.
Under certain assumptions on the minimization toolbox, we prove that our method can build, in a finite number of steps, a deformation whose maximum distortion is arbitrarily close to the (unknown) minimum. We performed extensive testing: on more than 10,000 domains QIS was reliably better than the competing methods. In summary, we reliably build 2D and 3D mesh deformations with the smallest known distortion estimates for very stiff problems.
期刊介绍:
ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.