{"title":"宇宙辐射和暗能量背景中冷暗物质密度对比研究:一种基于对称性的方法","authors":"Aritra Ganguly, Amitava Choudhuri","doi":"10.1134/S0202289323040084","DOIUrl":null,"url":null,"abstract":"<p>We study the density contrast equations for cold dark matter (CDM) in the cosmological radiation and dark energy (DE) background. We provide a general prescription for the derivation of the aforesaid density contrast equations of the CDM using the metric perturbation technique. In particular, in the early radiation domination, the density contrast equation, the so-called Mészáros equation is derived, considering a four-fluid model, while on the other hand, in the late time DE domination, the “w-Mészáros equation” is derived, using the two-fluid system of CDM and DE. In the first case, we find eight-parameter Lie symmetries, while in the second case we also obtain eight symmetry generators of the “w-Mészáros equation,” each for the values of the equation-of-state parameter <span>\\(w=-2/3\\)</span> and <span>\\(-1\\)</span>. Finding group-invariant solutions using the invariant curve condition for both cases, we have investigated the sub-horizon evolution of density contrasts of the CDM and provided a qualitative study on the nature of evolution of the CDM perturbations. The density contrast of CDM shows no growth during the radiation dominated era, but growth is seen just at the time of matter-radiation equality. The freezing or stagnation of the density contrast of the CDM prior to the matter-radiation equilibrium is due to the rapid expansion of the radiation background at early time, while the decay of the density contrast with increasing scale factor, which results in suppression in the growth of the inhomogeneity, is due to the DE dominated accelerated expansion.</p>","PeriodicalId":583,"journal":{"name":"Gravitation and Cosmology","volume":"29 4","pages":"419 - 431"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studies of Density Contrast of Cold Dark Matter in Cosmological Radiation and Dark Energy Background: A Symmetry-Based Approach\",\"authors\":\"Aritra Ganguly, Amitava Choudhuri\",\"doi\":\"10.1134/S0202289323040084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the density contrast equations for cold dark matter (CDM) in the cosmological radiation and dark energy (DE) background. We provide a general prescription for the derivation of the aforesaid density contrast equations of the CDM using the metric perturbation technique. In particular, in the early radiation domination, the density contrast equation, the so-called Mészáros equation is derived, considering a four-fluid model, while on the other hand, in the late time DE domination, the “w-Mészáros equation” is derived, using the two-fluid system of CDM and DE. In the first case, we find eight-parameter Lie symmetries, while in the second case we also obtain eight symmetry generators of the “w-Mészáros equation,” each for the values of the equation-of-state parameter <span>\\\\(w=-2/3\\\\)</span> and <span>\\\\(-1\\\\)</span>. Finding group-invariant solutions using the invariant curve condition for both cases, we have investigated the sub-horizon evolution of density contrasts of the CDM and provided a qualitative study on the nature of evolution of the CDM perturbations. The density contrast of CDM shows no growth during the radiation dominated era, but growth is seen just at the time of matter-radiation equality. The freezing or stagnation of the density contrast of the CDM prior to the matter-radiation equilibrium is due to the rapid expansion of the radiation background at early time, while the decay of the density contrast with increasing scale factor, which results in suppression in the growth of the inhomogeneity, is due to the DE dominated accelerated expansion.</p>\",\"PeriodicalId\":583,\"journal\":{\"name\":\"Gravitation and Cosmology\",\"volume\":\"29 4\",\"pages\":\"419 - 431\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gravitation and Cosmology\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0202289323040084\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gravitation and Cosmology","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S0202289323040084","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Studies of Density Contrast of Cold Dark Matter in Cosmological Radiation and Dark Energy Background: A Symmetry-Based Approach
We study the density contrast equations for cold dark matter (CDM) in the cosmological radiation and dark energy (DE) background. We provide a general prescription for the derivation of the aforesaid density contrast equations of the CDM using the metric perturbation technique. In particular, in the early radiation domination, the density contrast equation, the so-called Mészáros equation is derived, considering a four-fluid model, while on the other hand, in the late time DE domination, the “w-Mészáros equation” is derived, using the two-fluid system of CDM and DE. In the first case, we find eight-parameter Lie symmetries, while in the second case we also obtain eight symmetry generators of the “w-Mészáros equation,” each for the values of the equation-of-state parameter \(w=-2/3\) and \(-1\). Finding group-invariant solutions using the invariant curve condition for both cases, we have investigated the sub-horizon evolution of density contrasts of the CDM and provided a qualitative study on the nature of evolution of the CDM perturbations. The density contrast of CDM shows no growth during the radiation dominated era, but growth is seen just at the time of matter-radiation equality. The freezing or stagnation of the density contrast of the CDM prior to the matter-radiation equilibrium is due to the rapid expansion of the radiation background at early time, while the decay of the density contrast with increasing scale factor, which results in suppression in the growth of the inhomogeneity, is due to the DE dominated accelerated expansion.
期刊介绍:
Gravitation and Cosmology is a peer-reviewed periodical, dealing with the full range of topics of gravitational physics and relativistic cosmology and published under the auspices of the Russian Gravitation Society and Peoples’ Friendship University of Russia. The journal publishes research papers, review articles and brief communications on the following fields: theoretical (classical and quantum) gravitation; relativistic astrophysics and cosmology, exact solutions and modern mathematical methods in gravitation and cosmology, including Lie groups, geometry and topology; unification theories including gravitation; fundamental physical constants and their possible variations; fundamental gravity experiments on Earth and in space; related topics. It also publishes selected old papers which have not lost their topicality but were previously published only in Russian and were not available to the worldwide research community