{"title":"路径图的简洁数据结构","authors":"Girish Balakrishnan , Sankardeep Chakraborty , N.S. Narayanaswamy , Kunihiko Sadakane","doi":"10.1016/j.ic.2023.105124","DOIUrl":null,"url":null,"abstract":"<div><p><span>We consider the problem of designing a succinct data structure for </span><em>path graphs</em><span>, that generalizes interval graphs, on </span><em>n</em> vertices while efficiently supporting degree, adjacency, and neighbourhood queries. We provide the following two solutions for this problem:</p><ul><li><span>1.</span><span><p>an <span><math><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span>-bit succinct data structure that supports adjacency query in <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> time, neighbourhood query in <span><math><mi>O</mi><mo>(</mo><mi>d</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> time and finally, degree query in <span><math><mi>min</mi><mo></mo><mo>{</mo><mi>O</mi><mo>(</mo><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mi>n</mi><mo>)</mo><mo>,</mo><mi>O</mi><mo>(</mo><mi>d</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo><mo>}</mo></math></span> time where <em>d</em> is the degree of the queried vertex.</p></span></li><li><span>2.</span><span><p>an <span><math><mi>O</mi><mo>(</mo><mi>n</mi><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mi>n</mi><mo>)</mo></math></span>-bit space-efficient data structure that supports adjacency, neighborhood, and degree queries optimally.</p></span></li></ul> Central to our data structures is the usage of the heavy path decomposition, followed by careful bookkeeping using an orthogonal range search data structure using wavelet trees among others, which may be of independent interest for designing succinct data structures for other graph classes.</div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"296 ","pages":"Article 105124"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Succinct data structure for path graphs\",\"authors\":\"Girish Balakrishnan , Sankardeep Chakraborty , N.S. Narayanaswamy , Kunihiko Sadakane\",\"doi\":\"10.1016/j.ic.2023.105124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We consider the problem of designing a succinct data structure for </span><em>path graphs</em><span>, that generalizes interval graphs, on </span><em>n</em> vertices while efficiently supporting degree, adjacency, and neighbourhood queries. We provide the following two solutions for this problem:</p><ul><li><span>1.</span><span><p>an <span><math><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span>-bit succinct data structure that supports adjacency query in <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> time, neighbourhood query in <span><math><mi>O</mi><mo>(</mo><mi>d</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> time and finally, degree query in <span><math><mi>min</mi><mo></mo><mo>{</mo><mi>O</mi><mo>(</mo><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mi>n</mi><mo>)</mo><mo>,</mo><mi>O</mi><mo>(</mo><mi>d</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo><mo>}</mo></math></span> time where <em>d</em> is the degree of the queried vertex.</p></span></li><li><span>2.</span><span><p>an <span><math><mi>O</mi><mo>(</mo><mi>n</mi><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mi>n</mi><mo>)</mo></math></span>-bit space-efficient data structure that supports adjacency, neighborhood, and degree queries optimally.</p></span></li></ul> Central to our data structures is the usage of the heavy path decomposition, followed by careful bookkeeping using an orthogonal range search data structure using wavelet trees among others, which may be of independent interest for designing succinct data structures for other graph classes.</div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"296 \",\"pages\":\"Article 105124\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089054012300127X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089054012300127X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
We consider the problem of designing a succinct data structure for path graphs, that generalizes interval graphs, on n vertices while efficiently supporting degree, adjacency, and neighbourhood queries. We provide the following two solutions for this problem:
1.
an -bit succinct data structure that supports adjacency query in time, neighbourhood query in time and finally, degree query in time where d is the degree of the queried vertex.
2.
an -bit space-efficient data structure that supports adjacency, neighborhood, and degree queries optimally.
Central to our data structures is the usage of the heavy path decomposition, followed by careful bookkeeping using an orthogonal range search data structure using wavelet trees among others, which may be of independent interest for designing succinct data structures for other graph classes.
期刊介绍:
Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as
-Biological computation and computational biology-
Computational complexity-
Computer theorem-proving-
Concurrency and distributed process theory-
Cryptographic theory-
Data base theory-
Decision problems in logic-
Design and analysis of algorithms-
Discrete optimization and mathematical programming-
Inductive inference and learning theory-
Logic & constraint programming-
Program verification & model checking-
Probabilistic & Quantum computation-
Semantics of programming languages-
Symbolic computation, lambda calculus, and rewriting systems-
Types and typechecking