路径图的简洁数据结构

IF 0.8 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Girish Balakrishnan , Sankardeep Chakraborty , N.S. Narayanaswamy , Kunihiko Sadakane
{"title":"路径图的简洁数据结构","authors":"Girish Balakrishnan ,&nbsp;Sankardeep Chakraborty ,&nbsp;N.S. Narayanaswamy ,&nbsp;Kunihiko Sadakane","doi":"10.1016/j.ic.2023.105124","DOIUrl":null,"url":null,"abstract":"<div><p><span>We consider the problem of designing a succinct data structure for </span><em>path graphs</em><span>, that generalizes interval graphs, on </span><em>n</em> vertices while efficiently supporting degree, adjacency, and neighbourhood queries. We provide the following two solutions for this problem:</p><ul><li><span>1.</span><span><p>an <span><math><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>-bit succinct data structure that supports adjacency query in <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time, neighbourhood query in <span><math><mi>O</mi><mo>(</mo><mi>d</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time and finally, degree query in <span><math><mi>min</mi><mo>⁡</mo><mo>{</mo><mi>O</mi><mo>(</mo><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>⁡</mo><mi>n</mi><mo>)</mo><mo>,</mo><mi>O</mi><mo>(</mo><mi>d</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo><mo>}</mo></math></span> time where <em>d</em> is the degree of the queried vertex.</p></span></li><li><span>2.</span><span><p>an <span><math><mi>O</mi><mo>(</mo><mi>n</mi><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>-bit space-efficient data structure that supports adjacency, neighborhood, and degree queries optimally.</p></span></li></ul> Central to our data structures is the usage of the heavy path decomposition, followed by careful bookkeeping using an orthogonal range search data structure using wavelet trees among others, which may be of independent interest for designing succinct data structures for other graph classes.</div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"296 ","pages":"Article 105124"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Succinct data structure for path graphs\",\"authors\":\"Girish Balakrishnan ,&nbsp;Sankardeep Chakraborty ,&nbsp;N.S. Narayanaswamy ,&nbsp;Kunihiko Sadakane\",\"doi\":\"10.1016/j.ic.2023.105124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We consider the problem of designing a succinct data structure for </span><em>path graphs</em><span>, that generalizes interval graphs, on </span><em>n</em> vertices while efficiently supporting degree, adjacency, and neighbourhood queries. We provide the following two solutions for this problem:</p><ul><li><span>1.</span><span><p>an <span><math><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>-bit succinct data structure that supports adjacency query in <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time, neighbourhood query in <span><math><mi>O</mi><mo>(</mo><mi>d</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time and finally, degree query in <span><math><mi>min</mi><mo>⁡</mo><mo>{</mo><mi>O</mi><mo>(</mo><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>⁡</mo><mi>n</mi><mo>)</mo><mo>,</mo><mi>O</mi><mo>(</mo><mi>d</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo><mo>}</mo></math></span> time where <em>d</em> is the degree of the queried vertex.</p></span></li><li><span>2.</span><span><p>an <span><math><mi>O</mi><mo>(</mo><mi>n</mi><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>-bit space-efficient data structure that supports adjacency, neighborhood, and degree queries optimally.</p></span></li></ul> Central to our data structures is the usage of the heavy path decomposition, followed by careful bookkeeping using an orthogonal range search data structure using wavelet trees among others, which may be of independent interest for designing succinct data structures for other graph classes.</div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"296 \",\"pages\":\"Article 105124\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089054012300127X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089054012300127X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的问题是为路径图设计一个简洁的数据结构,该结构可以在n个顶点上推广区间图,同时有效地支持度,邻接性和邻域查询。针对此问题,我们提供以下两种解决方案:一个nlog (n) +o(nlog (n))位的简洁数据结构,它支持o(log (n))时间内的邻接查询,o(log (n))时间内的邻域查询,最后是min (o(log2)), o(dlog (n))}时间内的度查询,其中d是查询顶点的度。一种O(nlog2 (n))位空间效率高的数据结构,最优地支持邻接、邻域和度查询。我们的数据结构的核心是使用重路径分解,其次是使用正交范围搜索数据结构的仔细记录,其中使用小波树,这可能是为其他图类设计简洁数据结构的独立兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Succinct data structure for path graphs

We consider the problem of designing a succinct data structure for path graphs, that generalizes interval graphs, on n vertices while efficiently supporting degree, adjacency, and neighbourhood queries. We provide the following two solutions for this problem:

  • 1.

    an nlogn+o(nlogn)-bit succinct data structure that supports adjacency query in O(logn) time, neighbourhood query in O(dlogn) time and finally, degree query in min{O(log2n),O(dlogn)} time where d is the degree of the queried vertex.

  • 2.

    an O(nlog2n)-bit space-efficient data structure that supports adjacency, neighborhood, and degree queries optimally.

Central to our data structures is the usage of the heavy path decomposition, followed by careful bookkeeping using an orthogonal range search data structure using wavelet trees among others, which may be of independent interest for designing succinct data structures for other graph classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信