Roxanne Alvarez , Jayson Kurfis , Michael Hendrickson , Daniel S. Sem
{"title":"利用SemKur-IM(一种新型荧光双硫代探针)实时检测ipsc衍生的神经元培养物中的硫醇。","authors":"Roxanne Alvarez , Jayson Kurfis , Michael Hendrickson , Daniel S. Sem","doi":"10.1016/j.slasd.2023.11.003","DOIUrl":null,"url":null,"abstract":"<div><p>Neurological disorders associated with inflammation and oxidative stress show reduced glutathione (GSH) levels in the human brain. Drug discovery efforts and pharmacological studies would benefit from tools (<em>e.g.</em> chemical probes) that detect changes to oxidative stress, from the perspective of physiologically-relevant reporters like cellular thiols, including GSH. To this end, we have developed a fluorescence visualization assay using iPSC-derived cortical glutamatergic neurons that were loaded with 25 μM of a novel thiol-detection fluorescent probe, SemKur-IM. This probe enables visualization of cellular thiol level changes in the neuronal somas and neurites, in response exposure to N-acetyl-cysteine (NAC). Cellular thiol redox state was observed to change, based on an increase in green fluorescence (485 nm excitation maximum; 525 nm emission maximum) due to changes in thiol levels, from 0 to 40 mM. Interestingly, prior to treatment with NAC, cells did not appear to have significant levels of reduced thiols. Our studies demonstrate the utility of SemKur-IM in the detection of thiol levels in live cells in response to chemical exposures, such as from drugs that return the cell to a healthier reduced state. An initial application to screening the effects of an Alzheimer's disease drug candidate, Posiphen, using fluorescence cell sorting is presented. Other potential applications include high throughput screening of central nervous system (CNS) drugs thought to work by affecting cellular redox state in neurons.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"29 3","pages":"Article 100127"},"PeriodicalIF":2.7000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472555223000813/pdfft?md5=7e136270f0fb36ee6010dfc773e8300d&pid=1-s2.0-S2472555223000813-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Real-time thiol detection in iPSC-derived neuron cultures using SemKur-IM, a novel fluorescent dithio probe\",\"authors\":\"Roxanne Alvarez , Jayson Kurfis , Michael Hendrickson , Daniel S. Sem\",\"doi\":\"10.1016/j.slasd.2023.11.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neurological disorders associated with inflammation and oxidative stress show reduced glutathione (GSH) levels in the human brain. Drug discovery efforts and pharmacological studies would benefit from tools (<em>e.g.</em> chemical probes) that detect changes to oxidative stress, from the perspective of physiologically-relevant reporters like cellular thiols, including GSH. To this end, we have developed a fluorescence visualization assay using iPSC-derived cortical glutamatergic neurons that were loaded with 25 μM of a novel thiol-detection fluorescent probe, SemKur-IM. This probe enables visualization of cellular thiol level changes in the neuronal somas and neurites, in response exposure to N-acetyl-cysteine (NAC). Cellular thiol redox state was observed to change, based on an increase in green fluorescence (485 nm excitation maximum; 525 nm emission maximum) due to changes in thiol levels, from 0 to 40 mM. Interestingly, prior to treatment with NAC, cells did not appear to have significant levels of reduced thiols. Our studies demonstrate the utility of SemKur-IM in the detection of thiol levels in live cells in response to chemical exposures, such as from drugs that return the cell to a healthier reduced state. An initial application to screening the effects of an Alzheimer's disease drug candidate, Posiphen, using fluorescence cell sorting is presented. Other potential applications include high throughput screening of central nervous system (CNS) drugs thought to work by affecting cellular redox state in neurons.</p></div>\",\"PeriodicalId\":21764,\"journal\":{\"name\":\"SLAS Discovery\",\"volume\":\"29 3\",\"pages\":\"Article 100127\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2472555223000813/pdfft?md5=7e136270f0fb36ee6010dfc773e8300d&pid=1-s2.0-S2472555223000813-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLAS Discovery\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2472555223000813\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Discovery","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472555223000813","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Real-time thiol detection in iPSC-derived neuron cultures using SemKur-IM, a novel fluorescent dithio probe
Neurological disorders associated with inflammation and oxidative stress show reduced glutathione (GSH) levels in the human brain. Drug discovery efforts and pharmacological studies would benefit from tools (e.g. chemical probes) that detect changes to oxidative stress, from the perspective of physiologically-relevant reporters like cellular thiols, including GSH. To this end, we have developed a fluorescence visualization assay using iPSC-derived cortical glutamatergic neurons that were loaded with 25 μM of a novel thiol-detection fluorescent probe, SemKur-IM. This probe enables visualization of cellular thiol level changes in the neuronal somas and neurites, in response exposure to N-acetyl-cysteine (NAC). Cellular thiol redox state was observed to change, based on an increase in green fluorescence (485 nm excitation maximum; 525 nm emission maximum) due to changes in thiol levels, from 0 to 40 mM. Interestingly, prior to treatment with NAC, cells did not appear to have significant levels of reduced thiols. Our studies demonstrate the utility of SemKur-IM in the detection of thiol levels in live cells in response to chemical exposures, such as from drugs that return the cell to a healthier reduced state. An initial application to screening the effects of an Alzheimer's disease drug candidate, Posiphen, using fluorescence cell sorting is presented. Other potential applications include high throughput screening of central nervous system (CNS) drugs thought to work by affecting cellular redox state in neurons.
期刊介绍:
Advancing Life Sciences R&D: SLAS Discovery reports how scientists develop and utilize novel technologies and/or approaches to provide and characterize chemical and biological tools to understand and treat human disease.
SLAS Discovery is a peer-reviewed journal that publishes scientific reports that enable and improve target validation, evaluate current drug discovery technologies, provide novel research tools, and incorporate research approaches that enhance depth of knowledge and drug discovery success.
SLAS Discovery emphasizes scientific and technical advances in target identification/validation (including chemical probes, RNA silencing, gene editing technologies); biomarker discovery; assay development; virtual, medium- or high-throughput screening (biochemical and biological, biophysical, phenotypic, toxicological, ADME); lead generation/optimization; chemical biology; and informatics (data analysis, image analysis, statistics, bio- and chemo-informatics). Review articles on target biology, new paradigms in drug discovery and advances in drug discovery technologies.
SLAS Discovery is of particular interest to those involved in analytical chemistry, applied microbiology, automation, biochemistry, bioengineering, biomedical optics, biotechnology, bioinformatics, cell biology, DNA science and technology, genetics, information technology, medicinal chemistry, molecular biology, natural products chemistry, organic chemistry, pharmacology, spectroscopy, and toxicology.
SLAS Discovery is a member of the Committee on Publication Ethics (COPE) and was published previously (1996-2016) as the Journal of Biomolecular Screening (JBS).