{"title":"人口增长率、寿命和世代时间的精确置信区间。","authors":"Carlos Hernandez-Suarez , Jorge Rabinovich","doi":"10.1016/j.tpb.2023.11.002","DOIUrl":null,"url":null,"abstract":"<div><p>By quantifying key life history parameters in populations, such as growth rate, longevity, and generation time, researchers and administrators can obtain valuable insights into its dynamics. Although point estimates of demographic parameters have been available since the inception of demography as a scientific discipline, the construction of confidence intervals has typically relied on approximations through series expansions or computationally intensive techniques. This study introduces the first mathematical expression for calculating confidence intervals for the aforementioned life history traits when individuals are unidentifiable and data are presented as a life table. The key finding is the accurate estimation of the confidence interval for <span><math><mi>r</mi></math></span>, the instantaneous growth rate, which is tested using Monte Carlo simulations with four arbitrary discrete distributions. In comparison to the bootstrap method, the proposed interval construction method proves more efficient, particularly for experiments with a total offspring size below 400. We discuss handling cases where data are organized in extended life tables or as a matrix of vital rates. We have developed and provided accompanying code to facilitate these computations.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"155 ","pages":"Pages 1-9"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact confidence intervals for population growth rate, longevity and generation time\",\"authors\":\"Carlos Hernandez-Suarez , Jorge Rabinovich\",\"doi\":\"10.1016/j.tpb.2023.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>By quantifying key life history parameters in populations, such as growth rate, longevity, and generation time, researchers and administrators can obtain valuable insights into its dynamics. Although point estimates of demographic parameters have been available since the inception of demography as a scientific discipline, the construction of confidence intervals has typically relied on approximations through series expansions or computationally intensive techniques. This study introduces the first mathematical expression for calculating confidence intervals for the aforementioned life history traits when individuals are unidentifiable and data are presented as a life table. The key finding is the accurate estimation of the confidence interval for <span><math><mi>r</mi></math></span>, the instantaneous growth rate, which is tested using Monte Carlo simulations with four arbitrary discrete distributions. In comparison to the bootstrap method, the proposed interval construction method proves more efficient, particularly for experiments with a total offspring size below 400. We discuss handling cases where data are organized in extended life tables or as a matrix of vital rates. We have developed and provided accompanying code to facilitate these computations.</p></div>\",\"PeriodicalId\":49437,\"journal\":{\"name\":\"Theoretical Population Biology\",\"volume\":\"155 \",\"pages\":\"Pages 1-9\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Population Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040580923000655\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Population Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580923000655","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
Exact confidence intervals for population growth rate, longevity and generation time
By quantifying key life history parameters in populations, such as growth rate, longevity, and generation time, researchers and administrators can obtain valuable insights into its dynamics. Although point estimates of demographic parameters have been available since the inception of demography as a scientific discipline, the construction of confidence intervals has typically relied on approximations through series expansions or computationally intensive techniques. This study introduces the first mathematical expression for calculating confidence intervals for the aforementioned life history traits when individuals are unidentifiable and data are presented as a life table. The key finding is the accurate estimation of the confidence interval for , the instantaneous growth rate, which is tested using Monte Carlo simulations with four arbitrary discrete distributions. In comparison to the bootstrap method, the proposed interval construction method proves more efficient, particularly for experiments with a total offspring size below 400. We discuss handling cases where data are organized in extended life tables or as a matrix of vital rates. We have developed and provided accompanying code to facilitate these computations.
期刊介绍:
An interdisciplinary journal, Theoretical Population Biology presents articles on theoretical aspects of the biology of populations, particularly in the areas of demography, ecology, epidemiology, evolution, and genetics. Emphasis is on the development of mathematical theory and models that enhance the understanding of biological phenomena.
Articles highlight the motivation and significance of the work for advancing progress in biology, relying on a substantial mathematical effort to obtain biological insight. The journal also presents empirical results and computational and statistical methods directly impinging on theoretical problems in population biology.