基于硼酸修饰的2-甲基丙烯酸羟乙酯和乙二醇二甲基丙烯酸酯作为葡萄糖高亲和力配体的选择性吸附剂

IF 1.1 4区 材料科学 Q3 METALLURGY & METALLURGICAL ENGINEERING
I. S. Garkushina, A. S. Panyuta, P. Yu. Morozova, A. A. Osipenko
{"title":"基于硼酸修饰的2-甲基丙烯酸羟乙酯和乙二醇二甲基丙烯酸酯作为葡萄糖高亲和力配体的选择性吸附剂","authors":"I. S. Garkushina,&nbsp;A. S. Panyuta,&nbsp;P. Yu. Morozova,&nbsp;A. A. Osipenko","doi":"10.1134/S2070205123701022","DOIUrl":null,"url":null,"abstract":"<p>A synthesis method of granulated polymeric sorbents based on 2-hydroxyethylmethacrylate and ethylene glycol dimethacrylate that possess affinity to glucose sorption sites formed by boric acid molecules has been developed. The participation of boric acid as an additional crosslinking agent and the effect of the amount of the introduced ligand on the surface morphology of the granules and physicochemical properties of the polymeric sorbents have been determined. It has been found that this modification of the polymer matrix promotes an increase in the affinity of the sorption surface and its adsorption capacity to bind glucose in a dynamic mode, as well as high selectivity in comparison with the sorption of its structural analogue, fructose. This can further be used in the development of a method of isolation of glucose from a multicomponent solution and a sorption method of separation of sugars.</p>","PeriodicalId":745,"journal":{"name":"Protection of Metals and Physical Chemistry of Surfaces","volume":"59 5","pages":"843 - 853"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective Sorbents Based on 2-Hydroxyethylmethacrylate and Ethylene Glycol Dimethacrylate Modified with Boric Acid as High-Affinity Ligands for Glucose\",\"authors\":\"I. S. Garkushina,&nbsp;A. S. Panyuta,&nbsp;P. Yu. Morozova,&nbsp;A. A. Osipenko\",\"doi\":\"10.1134/S2070205123701022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A synthesis method of granulated polymeric sorbents based on 2-hydroxyethylmethacrylate and ethylene glycol dimethacrylate that possess affinity to glucose sorption sites formed by boric acid molecules has been developed. The participation of boric acid as an additional crosslinking agent and the effect of the amount of the introduced ligand on the surface morphology of the granules and physicochemical properties of the polymeric sorbents have been determined. It has been found that this modification of the polymer matrix promotes an increase in the affinity of the sorption surface and its adsorption capacity to bind glucose in a dynamic mode, as well as high selectivity in comparison with the sorption of its structural analogue, fructose. This can further be used in the development of a method of isolation of glucose from a multicomponent solution and a sorption method of separation of sugars.</p>\",\"PeriodicalId\":745,\"journal\":{\"name\":\"Protection of Metals and Physical Chemistry of Surfaces\",\"volume\":\"59 5\",\"pages\":\"843 - 853\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protection of Metals and Physical Chemistry of Surfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2070205123701022\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protection of Metals and Physical Chemistry of Surfaces","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S2070205123701022","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

研究了以2-羟乙基甲基丙烯酸酯和乙二醇二甲基丙烯酸酯为基础,对硼酸分子形成的葡萄糖吸附位点具有亲和力的颗粒状高分子吸附剂的合成方法。测定了硼酸作为附加交联剂的参与以及引入配体的量对颗粒表面形貌和高分子吸附剂理化性能的影响。研究发现,聚合物基质的这种修饰促进了吸附表面亲和力的增加,以及其以动态模式结合葡萄糖的吸附能力,与其结构类似物果糖的吸附相比,具有很高的选择性。这可进一步用于开发从多组分溶液中分离葡萄糖的方法和分离糖的吸附方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Selective Sorbents Based on 2-Hydroxyethylmethacrylate and Ethylene Glycol Dimethacrylate Modified with Boric Acid as High-Affinity Ligands for Glucose

Selective Sorbents Based on 2-Hydroxyethylmethacrylate and Ethylene Glycol Dimethacrylate Modified with Boric Acid as High-Affinity Ligands for Glucose

A synthesis method of granulated polymeric sorbents based on 2-hydroxyethylmethacrylate and ethylene glycol dimethacrylate that possess affinity to glucose sorption sites formed by boric acid molecules has been developed. The participation of boric acid as an additional crosslinking agent and the effect of the amount of the introduced ligand on the surface morphology of the granules and physicochemical properties of the polymeric sorbents have been determined. It has been found that this modification of the polymer matrix promotes an increase in the affinity of the sorption surface and its adsorption capacity to bind glucose in a dynamic mode, as well as high selectivity in comparison with the sorption of its structural analogue, fructose. This can further be used in the development of a method of isolation of glucose from a multicomponent solution and a sorption method of separation of sugars.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
18.20%
发文量
90
审稿时长
4-8 weeks
期刊介绍: Protection of Metals and Physical Chemistry of Surfaces is an international peer reviewed journal that publishes articles covering all aspects of the physical chemistry of materials and interfaces in various environments. The journal covers all related problems of modern physical chemistry and materials science, including: physicochemical processes at interfaces; adsorption phenomena; complexing from molecular and supramolecular structures at the interfaces to new substances, materials and coatings; nanoscale and nanostructured materials and coatings, composed and dispersed materials; physicochemical problems of corrosion, degradation and protection; investigation methods for surface and interface systems, processes, structures, materials and coatings. No principe restrictions exist related systems, types of processes, methods of control and study. The journal welcomes conceptual, theoretical, experimental, methodological, instrumental, environmental, and all other possible studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信