Bang-Ying Tang, Ming Tian, Huan Chen, Hui Han, Han Zhou, Si-Chen Li, Bo Xu, Rui-Fang Dong, Bo Liu, Wan-Rong Yu
{"title":"量子纠缠配电网中75公里光纤量子时钟同步的演示","authors":"Bang-Ying Tang, Ming Tian, Huan Chen, Hui Han, Han Zhou, Si-Chen Li, Bo Xu, Rui-Fang Dong, Bo Liu, Wan-Rong Yu","doi":"10.1140/epjqt/s40507-023-00207-9","DOIUrl":null,"url":null,"abstract":"<div><p>The quantum entanglement distribution network, serviced as the communication infrastructure which distributes quantum information among remote users, enables many applications beyond the reach of classical networks. Recently, the applications such as quantum key distribution and quantum secure direct communication, have been successfully demonstrated in the quantum entanglement distribution network. In this article, we propose a multi-user round-trip quantum clock synchronization (QCS) scheme in the quantum network, which can be implemented with one single entangled photon source located at the server. The server distributes the entangled photons to remote multiple users with the wavelength division multiplexing strategy, and each user feeds partial received photons back to the server. The clock difference between the server and each user is calculated from the one-way and round-trip propagation times, which are determined according to the time correlation of entangled photons. Afterwards, the demonstration has been conducted between the server and a user over a 75-km-long fiber link, where the measured clock difference uncertainty is 4.45 ps, and the time deviation is 426 fs with an average time of 4000 s. Furthermore, the proposed QCS scheme is linearly scalable to many users, with respect to user hardware and number of deployed fibers.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"10 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00207-9","citationCount":"0","resultStr":"{\"title\":\"Demonstration of 75 km-fiber quantum clock synchronization in quantum entanglement distribution network\",\"authors\":\"Bang-Ying Tang, Ming Tian, Huan Chen, Hui Han, Han Zhou, Si-Chen Li, Bo Xu, Rui-Fang Dong, Bo Liu, Wan-Rong Yu\",\"doi\":\"10.1140/epjqt/s40507-023-00207-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The quantum entanglement distribution network, serviced as the communication infrastructure which distributes quantum information among remote users, enables many applications beyond the reach of classical networks. Recently, the applications such as quantum key distribution and quantum secure direct communication, have been successfully demonstrated in the quantum entanglement distribution network. In this article, we propose a multi-user round-trip quantum clock synchronization (QCS) scheme in the quantum network, which can be implemented with one single entangled photon source located at the server. The server distributes the entangled photons to remote multiple users with the wavelength division multiplexing strategy, and each user feeds partial received photons back to the server. The clock difference between the server and each user is calculated from the one-way and round-trip propagation times, which are determined according to the time correlation of entangled photons. Afterwards, the demonstration has been conducted between the server and a user over a 75-km-long fiber link, where the measured clock difference uncertainty is 4.45 ps, and the time deviation is 426 fs with an average time of 4000 s. Furthermore, the proposed QCS scheme is linearly scalable to many users, with respect to user hardware and number of deployed fibers.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00207-9\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-023-00207-9\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-023-00207-9","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Demonstration of 75 km-fiber quantum clock synchronization in quantum entanglement distribution network
The quantum entanglement distribution network, serviced as the communication infrastructure which distributes quantum information among remote users, enables many applications beyond the reach of classical networks. Recently, the applications such as quantum key distribution and quantum secure direct communication, have been successfully demonstrated in the quantum entanglement distribution network. In this article, we propose a multi-user round-trip quantum clock synchronization (QCS) scheme in the quantum network, which can be implemented with one single entangled photon source located at the server. The server distributes the entangled photons to remote multiple users with the wavelength division multiplexing strategy, and each user feeds partial received photons back to the server. The clock difference between the server and each user is calculated from the one-way and round-trip propagation times, which are determined according to the time correlation of entangled photons. Afterwards, the demonstration has been conducted between the server and a user over a 75-km-long fiber link, where the measured clock difference uncertainty is 4.45 ps, and the time deviation is 426 fs with an average time of 4000 s. Furthermore, the proposed QCS scheme is linearly scalable to many users, with respect to user hardware and number of deployed fibers.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.