聚类分类数据:软舍入k模

IF 0.8 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Surya Teja Gavva, Karthik C. S., Sharath Punna
{"title":"聚类分类数据:软舍入k模","authors":"Surya Teja Gavva,&nbsp;Karthik C. S.,&nbsp;Sharath Punna","doi":"10.1016/j.ic.2023.105115","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Over the last three decades, researchers have intensively explored various clustering tools for categorical data analysis. Despite the proposal of various </span>clustering algorithms, the classical </span><em>k</em><span>-modes algorithm remains a popular choice for unsupervised learning of categorical data. Surprisingly, our first insight is that in a natural generative block model, the </span><em>k</em><span>-modes algorithm performs poorly for a large range of parameters. We remedy this issue by proposing a soft rounding variant of the </span><em>k</em>-modes algorithm (<span>SoftModes</span>) and theoretically prove that our variant addresses the drawbacks of the <em>k</em><span>-modes algorithm in the generative model. Finally, we empirically verify that </span><span>SoftModes</span> performs well on both synthetic and real-world datasets.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"296 ","pages":"Article 105115"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustering categorical data: Soft rounding k-modes\",\"authors\":\"Surya Teja Gavva,&nbsp;Karthik C. S.,&nbsp;Sharath Punna\",\"doi\":\"10.1016/j.ic.2023.105115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Over the last three decades, researchers have intensively explored various clustering tools for categorical data analysis. Despite the proposal of various </span>clustering algorithms, the classical </span><em>k</em><span>-modes algorithm remains a popular choice for unsupervised learning of categorical data. Surprisingly, our first insight is that in a natural generative block model, the </span><em>k</em><span>-modes algorithm performs poorly for a large range of parameters. We remedy this issue by proposing a soft rounding variant of the </span><em>k</em>-modes algorithm (<span>SoftModes</span>) and theoretically prove that our variant addresses the drawbacks of the <em>k</em><span>-modes algorithm in the generative model. Finally, we empirically verify that </span><span>SoftModes</span> performs well on both synthetic and real-world datasets.</p></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"296 \",\"pages\":\"Article 105115\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890540123001189\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540123001189","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在过去的三十年中,研究人员已经深入探索了用于分类数据分析的各种聚类工具。尽管提出了各种聚类算法,但经典的k模式算法仍然是分类数据无监督学习的热门选择。令人惊讶的是,我们的第一个见解是,在自然生成块模型中,k模式算法在大范围参数下表现不佳。我们通过提出k模式算法的软舍入变体(SoftModes)来解决这个问题,并从理论上证明我们的变体解决了生成模型中k模式算法的缺点。最后,我们通过经验验证了SoftModes在合成数据集和真实数据集上都表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering categorical data: Soft rounding k-modes

Over the last three decades, researchers have intensively explored various clustering tools for categorical data analysis. Despite the proposal of various clustering algorithms, the classical k-modes algorithm remains a popular choice for unsupervised learning of categorical data. Surprisingly, our first insight is that in a natural generative block model, the k-modes algorithm performs poorly for a large range of parameters. We remedy this issue by proposing a soft rounding variant of the k-modes algorithm (SoftModes) and theoretically prove that our variant addresses the drawbacks of the k-modes algorithm in the generative model. Finally, we empirically verify that SoftModes performs well on both synthetic and real-world datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信