双层的Brylinski函数

IF 0.6 4区 数学 Q3 MATHEMATICS
Pooja Rani , M.K. Vemuri
{"title":"双层的Brylinski函数","authors":"Pooja Rani ,&nbsp;M.K. Vemuri","doi":"10.1016/j.difgeo.2023.102078","DOIUrl":null,"url":null,"abstract":"<div><p><span>An analogue of Brylinski's knot beta function is defined for a compactly supported (Schwartz) distribution </span><em>T</em> on <em>d</em><span>-dimensional Euclidean space. This is a holomorphic function on a right half-plane. If </span><em>T</em><span><span> is a (uniform) double-layer on a compact smooth hypersurface, then the beta function has an </span>analytic continuation<span><span> to the complex plane as a meromorphic function, and the residues are integrals of invariants of the </span>second fundamental form. The first few residues are computed when </span></span><span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>d</mi><mo>=</mo><mn>3</mn></math></span>.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Brylinski beta function of a double layer\",\"authors\":\"Pooja Rani ,&nbsp;M.K. Vemuri\",\"doi\":\"10.1016/j.difgeo.2023.102078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>An analogue of Brylinski's knot beta function is defined for a compactly supported (Schwartz) distribution </span><em>T</em> on <em>d</em><span>-dimensional Euclidean space. This is a holomorphic function on a right half-plane. If </span><em>T</em><span><span> is a (uniform) double-layer on a compact smooth hypersurface, then the beta function has an </span>analytic continuation<span><span> to the complex plane as a meromorphic function, and the residues are integrals of invariants of the </span>second fundamental form. The first few residues are computed when </span></span><span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>d</mi><mo>=</mo><mn>3</mn></math></span>.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224523001043\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224523001043","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于d维欧几里德空间上的紧支撑(Schwartz)分布T,定义了Brylinski结函数的类比。这是一个右半平面上的全纯函数。如果T是紧致光滑超表面上的(一致)双层,则函数作为亚纯函数在复平面上有解析延拓,其残数是第二基本形式的不变量的积分。当d=2和d=3时计算前几个残数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Brylinski beta function of a double layer

An analogue of Brylinski's knot beta function is defined for a compactly supported (Schwartz) distribution T on d-dimensional Euclidean space. This is a holomorphic function on a right half-plane. If T is a (uniform) double-layer on a compact smooth hypersurface, then the beta function has an analytic continuation to the complex plane as a meromorphic function, and the residues are integrals of invariants of the second fundamental form. The first few residues are computed when d=2 and d=3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信