{"title":"准爱因斯坦流形承认闭合共形矢量场","authors":"J.F. Silva Filho","doi":"10.1016/j.difgeo.2023.102083","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we investigate quasi-Einstein manifolds admitting a closed conformal vector field. Initially, we present a rigidity result for quasi-Einstein manifolds with constant scalar curvature and carrying a non-parallel closed conformal vector field. Moreover, we prove that quasi-Einstein manifolds admitting a closed conformal vector field can be conformally changed to constant scalar curvature almost everywhere. Finally, we obtain a characterization for quasi-Einstein manifolds endowed with a non-parallel gradient conformal vector field.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"92 ","pages":"Article 102083"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-Einstein manifolds admitting a closed conformal vector field\",\"authors\":\"J.F. Silva Filho\",\"doi\":\"10.1016/j.difgeo.2023.102083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we investigate quasi-Einstein manifolds admitting a closed conformal vector field. Initially, we present a rigidity result for quasi-Einstein manifolds with constant scalar curvature and carrying a non-parallel closed conformal vector field. Moreover, we prove that quasi-Einstein manifolds admitting a closed conformal vector field can be conformally changed to constant scalar curvature almost everywhere. Finally, we obtain a characterization for quasi-Einstein manifolds endowed with a non-parallel gradient conformal vector field.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"92 \",\"pages\":\"Article 102083\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224523001092\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224523001092","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Quasi-Einstein manifolds admitting a closed conformal vector field
In this article, we investigate quasi-Einstein manifolds admitting a closed conformal vector field. Initially, we present a rigidity result for quasi-Einstein manifolds with constant scalar curvature and carrying a non-parallel closed conformal vector field. Moreover, we prove that quasi-Einstein manifolds admitting a closed conformal vector field can be conformally changed to constant scalar curvature almost everywhere. Finally, we obtain a characterization for quasi-Einstein manifolds endowed with a non-parallel gradient conformal vector field.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.