变系数KdV方程的精确解:时间系数的幂律

Motlatsi Molati
{"title":"变系数KdV方程的精确解:时间系数的幂律","authors":"Motlatsi Molati","doi":"10.1016/j.exco.2023.100126","DOIUrl":null,"url":null,"abstract":"<div><p>The Lie symmetry analysis of a power law in-time coefficients Korteweg–de Vries (KdV) equation is performed with the aim of specifying the model parameters (powers of <span><math><mi>t</mi></math></span>). That is, the symmetries of the resulting subclasses of the underlying equation are obtained. Further, symmetry reductions and some exact solutions are obtained.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"4 ","pages":"Article 100126"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X23000289/pdfft?md5=e7b499b9a817b8e0282ff728e9b6db5f&pid=1-s2.0-S2666657X23000289-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Exact solutions of a variable coefficient KdV equation: Power law in time-coefficients\",\"authors\":\"Motlatsi Molati\",\"doi\":\"10.1016/j.exco.2023.100126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Lie symmetry analysis of a power law in-time coefficients Korteweg–de Vries (KdV) equation is performed with the aim of specifying the model parameters (powers of <span><math><mi>t</mi></math></span>). That is, the symmetries of the resulting subclasses of the underlying equation are obtained. Further, symmetry reductions and some exact solutions are obtained.</p></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"4 \",\"pages\":\"Article 100126\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666657X23000289/pdfft?md5=e7b499b9a817b8e0282ff728e9b6db5f&pid=1-s2.0-S2666657X23000289-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X23000289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X23000289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对幂律时间系数Korteweg-de Vries (KdV)方程进行李氏对称分析,目的是指定模型参数(t的幂),即获得底层方程所得子类的对称性。进一步,得到了对称约简和一些精确解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact solutions of a variable coefficient KdV equation: Power law in time-coefficients

The Lie symmetry analysis of a power law in-time coefficients Korteweg–de Vries (KdV) equation is performed with the aim of specifying the model parameters (powers of t). That is, the symmetries of the resulting subclasses of the underlying equation are obtained. Further, symmetry reductions and some exact solutions are obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信