基于磁共振成像结果数字化参数的脑肿瘤识别

A.M. Al-Ansi , M. Almadi , V. Ryabtsev , T. Utkina
{"title":"基于磁共振成像结果数字化参数的脑肿瘤识别","authors":"A.M. Al-Ansi ,&nbsp;M. Almadi ,&nbsp;V. Ryabtsev ,&nbsp;T. Utkina","doi":"10.1016/j.exco.2023.100125","DOIUrl":null,"url":null,"abstract":"<div><p>A methodology is proposed for identifying brain tumors by dividing the database into four parts. The results obtained from the study of sample specimens for each type of brain tumor showed a high degree of similarity in recognition. This methodology can be applied in healthcare facilities to improve the accuracy of disease diagnosis.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"4 ","pages":"Article 100125"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X23000277/pdfft?md5=f3100a0e2172cdec05b25d019b3236c5&pid=1-s2.0-S2666657X23000277-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Identification of brain tumors based on digitized parameters from magnetic resonance imaging results\",\"authors\":\"A.M. Al-Ansi ,&nbsp;M. Almadi ,&nbsp;V. Ryabtsev ,&nbsp;T. Utkina\",\"doi\":\"10.1016/j.exco.2023.100125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A methodology is proposed for identifying brain tumors by dividing the database into four parts. The results obtained from the study of sample specimens for each type of brain tumor showed a high degree of similarity in recognition. This methodology can be applied in healthcare facilities to improve the accuracy of disease diagnosis.</p></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"4 \",\"pages\":\"Article 100125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666657X23000277/pdfft?md5=f3100a0e2172cdec05b25d019b3236c5&pid=1-s2.0-S2666657X23000277-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X23000277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X23000277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种将数据库分为四部分的脑肿瘤识别方法。对每一种脑肿瘤样本的研究结果显示,在识别上具有高度的相似性。该方法可应用于医疗机构,以提高疾病诊断的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of brain tumors based on digitized parameters from magnetic resonance imaging results

A methodology is proposed for identifying brain tumors by dividing the database into four parts. The results obtained from the study of sample specimens for each type of brain tumor showed a high degree of similarity in recognition. This methodology can be applied in healthcare facilities to improve the accuracy of disease diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信