肿瘤生长多相移动边界模型的模式形成和行波。

Jacob M Jepson, Reuben D O'Dea, John Billingham, Nabil T Fadai
{"title":"肿瘤生长多相移动边界模型的模式形成和行波。","authors":"Jacob M Jepson, Reuben D O'Dea, John Billingham, Nabil T Fadai","doi":"10.1093/imammb/dqad008","DOIUrl":null,"url":null,"abstract":"<p><p>We employ the multiphase, moving boundary model of Byrne et al. (2003, Appl. Math. Lett., 16, 567-573) that describes the evolution of a motile, viscous tumour cell phase and an inviscid extracellular liquid phase. This model comprises two partial differential equations that govern the cell volume fraction and the cell velocity, together with a moving boundary condition for the tumour edge, and here we characterize and analyse its travelling-wave and pattern-forming behaviour. Numerical simulations of the model indicate that patterned solutions can be obtained, which correspond to multiple regions of high cell density separated by regions of low cell density. In other parameter regimes, solutions of the model can develop into a forward- or backward-moving travelling wave, corresponding to tumour growth or extinction, respectively. A travelling-wave analysis allows us to find the corresponding wave speed, as well as criteria for the growth or extinction of the tumour. Furthermore, a stability analysis of these travelling-wave solutions provides us with criteria for the occurrence of patterned solutions. Finally, we discuss how the initial cell distribution, as well as parameters related to cellular motion and cell-liquid drag, control the qualitative features of patterned solutions.</p>","PeriodicalId":94130,"journal":{"name":"Mathematical medicine and biology : a journal of the IMA","volume":" ","pages":"327-347"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pattern formation and travelling waves in a multiphase moving boundary model of tumour growth.\",\"authors\":\"Jacob M Jepson, Reuben D O'Dea, John Billingham, Nabil T Fadai\",\"doi\":\"10.1093/imammb/dqad008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We employ the multiphase, moving boundary model of Byrne et al. (2003, Appl. Math. Lett., 16, 567-573) that describes the evolution of a motile, viscous tumour cell phase and an inviscid extracellular liquid phase. This model comprises two partial differential equations that govern the cell volume fraction and the cell velocity, together with a moving boundary condition for the tumour edge, and here we characterize and analyse its travelling-wave and pattern-forming behaviour. Numerical simulations of the model indicate that patterned solutions can be obtained, which correspond to multiple regions of high cell density separated by regions of low cell density. In other parameter regimes, solutions of the model can develop into a forward- or backward-moving travelling wave, corresponding to tumour growth or extinction, respectively. A travelling-wave analysis allows us to find the corresponding wave speed, as well as criteria for the growth or extinction of the tumour. Furthermore, a stability analysis of these travelling-wave solutions provides us with criteria for the occurrence of patterned solutions. Finally, we discuss how the initial cell distribution, as well as parameters related to cellular motion and cell-liquid drag, control the qualitative features of patterned solutions.</p>\",\"PeriodicalId\":94130,\"journal\":{\"name\":\"Mathematical medicine and biology : a journal of the IMA\",\"volume\":\" \",\"pages\":\"327-347\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical medicine and biology : a journal of the IMA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/imammb/dqad008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical medicine and biology : a journal of the IMA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imammb/dqad008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们采用了[5]的多相移动边界模型,该模型描述了一个移动的、粘性的肿瘤细胞期和一个不粘性的细胞外液相的演变。该模型包括两个控制细胞体积分数和细胞速度的偏微分方程,以及肿瘤边缘的移动边界条件,在这里我们描述和分析了其行波和模式形成行为。数值模拟结果表明,该模型可以得到图形化的解,该解对应于由低细胞密度区域隔开的多个高细胞密度区域。在其他参数条件下,模型的解可以发展成向前或向后移动的行波,分别对应于肿瘤的生长或消失。行波分析使我们能够找到相应的波速,以及肿瘤生长或消失的标准。此外,对这些行波解的稳定性分析为我们提供了出现图案解的判据。最后,我们讨论了初始细胞分布,以及与细胞运动和细胞-液阻力相关的参数,如何控制图案溶液的定性特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pattern formation and travelling waves in a multiphase moving boundary model of tumour growth.

We employ the multiphase, moving boundary model of Byrne et al. (2003, Appl. Math. Lett., 16, 567-573) that describes the evolution of a motile, viscous tumour cell phase and an inviscid extracellular liquid phase. This model comprises two partial differential equations that govern the cell volume fraction and the cell velocity, together with a moving boundary condition for the tumour edge, and here we characterize and analyse its travelling-wave and pattern-forming behaviour. Numerical simulations of the model indicate that patterned solutions can be obtained, which correspond to multiple regions of high cell density separated by regions of low cell density. In other parameter regimes, solutions of the model can develop into a forward- or backward-moving travelling wave, corresponding to tumour growth or extinction, respectively. A travelling-wave analysis allows us to find the corresponding wave speed, as well as criteria for the growth or extinction of the tumour. Furthermore, a stability analysis of these travelling-wave solutions provides us with criteria for the occurrence of patterned solutions. Finally, we discuss how the initial cell distribution, as well as parameters related to cellular motion and cell-liquid drag, control the qualitative features of patterned solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信