Thanh Q Bui, Ton That Huu Dat, Phan Tu Quy, Nguyen Thi Thanh Hai, Nguyen Minh Thai, Nguyen Vinh Phu, Le Van Tuan, Lam K Huynh, Mai Suan Li, Nguyen Thi Ai Nhung
{"title":"蛹虫草乙酸乙酯提取物中潜在抗高血糖化合物的鉴定:体外和硅片研究。","authors":"Thanh Q Bui, Ton That Huu Dat, Phan Tu Quy, Nguyen Thi Thanh Hai, Nguyen Minh Thai, Nguyen Vinh Phu, Le Van Tuan, Lam K Huynh, Mai Suan Li, Nguyen Thi Ai Nhung","doi":"10.1080/07391102.2023.2283156","DOIUrl":null,"url":null,"abstract":"<p><p><i>Cordyceps militaris</i> has been long known for valuable health benefits by folk experience and was recently reported with diabetes-tackling evidences, thus deserving extending efforts on screening for component-activity relationship. In this study, experiments were carried out to find the evidence, justification, and input for computations on the potential against diabetes-related protein structures: PDB-4W93, PDB-3W37, and PDB-4A3A. Liquid chromatography identified 14 bioactive compounds in the ethyl acetate extract (<b>1</b>-<b>14</b>) and quantified the contents of cordycepin (0.11%) and adenosine (0.01%). Bioassays revealed the overall potential of the extract against <i>α</i>-amylase (IC<sub>50</sub> = 6.443 ± 0.364 mg.mL<sup>-1</sup>) and <i>α</i>-glucosidase (IC<sub>50</sub> = 2.580 ± 0.194 mg.mL<sup>-1</sup>). A combination of different computational platforms was used to select the most promising candidates for applications as anti-diabetic bio-inhibitors, i.e. <b>1</b> (ground state: -888.49715 a.u.; dipole moment 3.779 Debye; <math><mrow><mrow><mrow><mover><mrow><mtext>DS</mtext></mrow><mo>¯</mo></mover></mrow></mrow></mrow></math> -12.3 kcal.mol<sup>-1</sup>; polarizability 34.7 Å<sup>3</sup>; log<i>P</i> - 1.30), <b>10</b> (ground state: -688.52406 a.u.; dipole moment 5.487 Debye; <math><mrow><mrow><mrow><mover><mrow><mtext>DS</mtext></mrow><mo>¯</mo></mover></mrow></mrow></mrow></math> -12.6 kcal.mol<sup>-1</sup>; polarizability 24.9 Å<sup>3</sup>; log<i>P</i> - 3.39), and <b>12</b> (ground state: -1460.07276 a.u.; dipole moment 3.976 Debye; <math><mrow><mrow><mrow><mover><mrow><mtext>DS</mtext></mrow><mo>¯</mo></mover></mrow></mrow></mrow></math> -12.5 kcal.mol<sup>-1</sup>; polarizability 52.4 Å<sup>3</sup>; log<i>P</i> - 4.39). The results encourage further experimental tests on cordycepin (<b>1</b>), mannitol (<b>10</b>), and adenosylribose (<b>12</b>) to validate their in-practice diabetes-related activities, thus conducive to hypoglycemic applications.Communicated by Ramaswamy H. Sarma.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"627-643"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of potential anti-hyperglycemic compounds in <i>Cordyceps militaris</i> ethyl acetate extract: <i>in vitro</i> and <i>in silico</i> studies.\",\"authors\":\"Thanh Q Bui, Ton That Huu Dat, Phan Tu Quy, Nguyen Thi Thanh Hai, Nguyen Minh Thai, Nguyen Vinh Phu, Le Van Tuan, Lam K Huynh, Mai Suan Li, Nguyen Thi Ai Nhung\",\"doi\":\"10.1080/07391102.2023.2283156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Cordyceps militaris</i> has been long known for valuable health benefits by folk experience and was recently reported with diabetes-tackling evidences, thus deserving extending efforts on screening for component-activity relationship. In this study, experiments were carried out to find the evidence, justification, and input for computations on the potential against diabetes-related protein structures: PDB-4W93, PDB-3W37, and PDB-4A3A. Liquid chromatography identified 14 bioactive compounds in the ethyl acetate extract (<b>1</b>-<b>14</b>) and quantified the contents of cordycepin (0.11%) and adenosine (0.01%). Bioassays revealed the overall potential of the extract against <i>α</i>-amylase (IC<sub>50</sub> = 6.443 ± 0.364 mg.mL<sup>-1</sup>) and <i>α</i>-glucosidase (IC<sub>50</sub> = 2.580 ± 0.194 mg.mL<sup>-1</sup>). A combination of different computational platforms was used to select the most promising candidates for applications as anti-diabetic bio-inhibitors, i.e. <b>1</b> (ground state: -888.49715 a.u.; dipole moment 3.779 Debye; <math><mrow><mrow><mrow><mover><mrow><mtext>DS</mtext></mrow><mo>¯</mo></mover></mrow></mrow></mrow></math> -12.3 kcal.mol<sup>-1</sup>; polarizability 34.7 Å<sup>3</sup>; log<i>P</i> - 1.30), <b>10</b> (ground state: -688.52406 a.u.; dipole moment 5.487 Debye; <math><mrow><mrow><mrow><mover><mrow><mtext>DS</mtext></mrow><mo>¯</mo></mover></mrow></mrow></mrow></math> -12.6 kcal.mol<sup>-1</sup>; polarizability 24.9 Å<sup>3</sup>; log<i>P</i> - 3.39), and <b>12</b> (ground state: -1460.07276 a.u.; dipole moment 3.976 Debye; <math><mrow><mrow><mrow><mover><mrow><mtext>DS</mtext></mrow><mo>¯</mo></mover></mrow></mrow></mrow></math> -12.5 kcal.mol<sup>-1</sup>; polarizability 52.4 Å<sup>3</sup>; log<i>P</i> - 4.39). The results encourage further experimental tests on cordycepin (<b>1</b>), mannitol (<b>10</b>), and adenosylribose (<b>12</b>) to validate their in-practice diabetes-related activities, thus conducive to hypoglycemic applications.Communicated by Ramaswamy H. Sarma.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"627-643\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2023.2283156\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2023.2283156","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Identification of potential anti-hyperglycemic compounds in Cordyceps militaris ethyl acetate extract: in vitro and in silico studies.
Cordyceps militaris has been long known for valuable health benefits by folk experience and was recently reported with diabetes-tackling evidences, thus deserving extending efforts on screening for component-activity relationship. In this study, experiments were carried out to find the evidence, justification, and input for computations on the potential against diabetes-related protein structures: PDB-4W93, PDB-3W37, and PDB-4A3A. Liquid chromatography identified 14 bioactive compounds in the ethyl acetate extract (1-14) and quantified the contents of cordycepin (0.11%) and adenosine (0.01%). Bioassays revealed the overall potential of the extract against α-amylase (IC50 = 6.443 ± 0.364 mg.mL-1) and α-glucosidase (IC50 = 2.580 ± 0.194 mg.mL-1). A combination of different computational platforms was used to select the most promising candidates for applications as anti-diabetic bio-inhibitors, i.e. 1 (ground state: -888.49715 a.u.; dipole moment 3.779 Debye; -12.3 kcal.mol-1; polarizability 34.7 Å3; logP - 1.30), 10 (ground state: -688.52406 a.u.; dipole moment 5.487 Debye; -12.6 kcal.mol-1; polarizability 24.9 Å3; logP - 3.39), and 12 (ground state: -1460.07276 a.u.; dipole moment 3.976 Debye; -12.5 kcal.mol-1; polarizability 52.4 Å3; logP - 4.39). The results encourage further experimental tests on cordycepin (1), mannitol (10), and adenosylribose (12) to validate their in-practice diabetes-related activities, thus conducive to hypoglycemic applications.Communicated by Ramaswamy H. Sarma.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.