Jiabing Luo , Xingzhao Wang , Shutao Wang , Wenle Li , Yanpeng Li , Tingyong Wang , Fengqi Xu , Yang Liu , Yan Zhou , Jun Zhang
{"title":"mof衍生的s掺杂NiCo2O4空心立方纳米笼用于高效电催化析氧。","authors":"Jiabing Luo , Xingzhao Wang , Shutao Wang , Wenle Li , Yanpeng Li , Tingyong Wang , Fengqi Xu , Yang Liu , Yan Zhou , Jun Zhang","doi":"10.1016/j.jcis.2023.11.094","DOIUrl":null,"url":null,"abstract":"<div><p>Inducing the surface reconstruction of spinels is critical for improving the electrocatalytic oxygen evolution reaction (OER) activity. Herein, S-doped NiCo<sub>2</sub>O<sub>4</sub> hollow cubic nanocage was synthesized by anion etching Metal-Organic Frameworks (MOFs) template and air annealing strategies. The hollow structure possesses a large specific surface area and pore size, facilitating active site exposure and mass transport. S<sup>2−</sup> doping regulates the electronic structure, reducing the oxidation potential of Ni sites during the OER process, thus promoting the surface reconstruction into γ-NiOOH active species. Meanwhile, S<sup>2−</sup> doping enhances conductivity, accelerating interfacial charge transfer. As a result, S-NiCo<sub>2</sub>O<sub>4</sub>-6 exhibits superior OER activity (262 mV overpotential @ 10 mA cm<sup>−2</sup>) and stability in 1.0 M KOH solution. Furthermore, 20 % Pt/C‖S-NiCo<sub>2</sub>O<sub>4</sub>-6 only needs 1.832 V to achieve 50 mA (the electrochemical active area is 4 cm<sup>2</sup>) in a homemade anion exchange membrane (AEM) electrolyzer. This work proposes a novel approach for preparing efficient anion-doped spinel-based OER electrocatalysts.</p></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"656 ","pages":"Pages 297-308"},"PeriodicalIF":9.7000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MOF-derived S-doped NiCo2O4 hollow cubic nanocage for highly efficient electrocatalytic oxygen evolution\",\"authors\":\"Jiabing Luo , Xingzhao Wang , Shutao Wang , Wenle Li , Yanpeng Li , Tingyong Wang , Fengqi Xu , Yang Liu , Yan Zhou , Jun Zhang\",\"doi\":\"10.1016/j.jcis.2023.11.094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Inducing the surface reconstruction of spinels is critical for improving the electrocatalytic oxygen evolution reaction (OER) activity. Herein, S-doped NiCo<sub>2</sub>O<sub>4</sub> hollow cubic nanocage was synthesized by anion etching Metal-Organic Frameworks (MOFs) template and air annealing strategies. The hollow structure possesses a large specific surface area and pore size, facilitating active site exposure and mass transport. S<sup>2−</sup> doping regulates the electronic structure, reducing the oxidation potential of Ni sites during the OER process, thus promoting the surface reconstruction into γ-NiOOH active species. Meanwhile, S<sup>2−</sup> doping enhances conductivity, accelerating interfacial charge transfer. As a result, S-NiCo<sub>2</sub>O<sub>4</sub>-6 exhibits superior OER activity (262 mV overpotential @ 10 mA cm<sup>−2</sup>) and stability in 1.0 M KOH solution. Furthermore, 20 % Pt/C‖S-NiCo<sub>2</sub>O<sub>4</sub>-6 only needs 1.832 V to achieve 50 mA (the electrochemical active area is 4 cm<sup>2</sup>) in a homemade anion exchange membrane (AEM) electrolyzer. This work proposes a novel approach for preparing efficient anion-doped spinel-based OER electrocatalysts.</p></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"656 \",\"pages\":\"Pages 297-308\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979723022117\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979723022117","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
诱导尖晶石的表面重构是提高电催化析氧反应活性的关键。本文采用负离子蚀刻金属有机骨架模板和空气退火策略合成了s掺杂NiCo2O4空心立方纳米笼。中空结构具有较大的比表面积和孔径,有利于活性部位的暴露和物质的运输。S2-掺杂调节了电子结构,降低了OER过程中Ni位点的氧化电位,从而促进了表面重构成γ-NiOOH活性物质。同时,掺杂S2增强了导电性能,加速了界面电荷的转移。结果表明,S-NiCo2O4-6在1.0 M KOH溶液中表现出优异的OER活性(过电位262 mV @ 10 mA cm-2)和稳定性。此外,20% Pt/C‖S-NiCo2O4-6在自制的AEM(阴离子交换膜)电解槽中只需要1.832 V就能达到50 mA(电化学活性面积为4 cm2)。本研究提出了一种制备高效阴离子掺杂尖晶石基OER电催化剂的新方法。
Inducing the surface reconstruction of spinels is critical for improving the electrocatalytic oxygen evolution reaction (OER) activity. Herein, S-doped NiCo2O4 hollow cubic nanocage was synthesized by anion etching Metal-Organic Frameworks (MOFs) template and air annealing strategies. The hollow structure possesses a large specific surface area and pore size, facilitating active site exposure and mass transport. S2− doping regulates the electronic structure, reducing the oxidation potential of Ni sites during the OER process, thus promoting the surface reconstruction into γ-NiOOH active species. Meanwhile, S2− doping enhances conductivity, accelerating interfacial charge transfer. As a result, S-NiCo2O4-6 exhibits superior OER activity (262 mV overpotential @ 10 mA cm−2) and stability in 1.0 M KOH solution. Furthermore, 20 % Pt/C‖S-NiCo2O4-6 only needs 1.832 V to achieve 50 mA (the electrochemical active area is 4 cm2) in a homemade anion exchange membrane (AEM) electrolyzer. This work proposes a novel approach for preparing efficient anion-doped spinel-based OER electrocatalysts.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies