周期均匀化椭圆方程的临界解集

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Fanghua Lin, Zhongwei Shen
{"title":"周期均匀化椭圆方程的临界解集","authors":"Fanghua Lin,&nbsp;Zhongwei Shen","doi":"10.1002/cpa.22186","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study critical sets of solutions <span></span><math>\n <semantics>\n <msub>\n <mi>u</mi>\n <mi>ε</mi>\n </msub>\n <annotation>$u_\\varepsilon$</annotation>\n </semantics></math> of second-order elliptic equations in divergence form with rapidly oscillating and periodic coefficients. Under some condition on the first-order correctors, we show that the <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>d</mi>\n <mo>−</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(d-2)$</annotation>\n </semantics></math>-dimensional Hausdorff measures of the critical sets are bounded uniformly with respect to the period <span></span><math>\n <semantics>\n <mi>ε</mi>\n <annotation>$\\varepsilon$</annotation>\n </semantics></math>, provided that doubling indices for solutions are bounded. The key step is an estimate of “turning” of an approximate tangent map, the projection of a non-constant solution <span></span><math>\n <semantics>\n <msub>\n <mi>u</mi>\n <mi>ε</mi>\n </msub>\n <annotation>$u_\\varepsilon$</annotation>\n </semantics></math> onto the subspace of spherical harmonics of order <span></span><math>\n <semantics>\n <mi>ℓ</mi>\n <annotation>$\\ell$</annotation>\n </semantics></math>, when the doubling index for <span></span><math>\n <semantics>\n <msub>\n <mi>u</mi>\n <mi>ε</mi>\n </msub>\n <annotation>$u_\\varepsilon$</annotation>\n </semantics></math> on a sphere <span></span><math>\n <semantics>\n <mrow>\n <mi>∂</mi>\n <mi>B</mi>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>r</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\partial B(0, r)$</annotation>\n </semantics></math> is trapped between <span></span><math>\n <semantics>\n <mrow>\n <mi>ℓ</mi>\n <mo>−</mo>\n <mi>δ</mi>\n </mrow>\n <annotation>$\\ell -\\delta$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>ℓ</mi>\n <mo>+</mo>\n <mi>δ</mi>\n </mrow>\n <annotation>$\\ell +\\delta$</annotation>\n </semantics></math>, for <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math> between 1 and a minimal radius <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>r</mi>\n <mo>∗</mo>\n </msup>\n <mo>≥</mo>\n <msub>\n <mi>C</mi>\n <mn>0</mn>\n </msub>\n <mi>ε</mi>\n </mrow>\n <annotation>$r^*\\ge C_0\\varepsilon$</annotation>\n </semantics></math>. This estimate is proved by using harmonic approximation successively. With a suitable <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <annotation>$L^2$</annotation>\n </semantics></math> renormalization as well as rescaling we are able to control the accumulated errors introduced by homogenization and projection. Our proof also gives uniform bounds for Minkowski contents of the critical sets.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical sets of solutions of elliptic equations in periodic homogenization\",\"authors\":\"Fanghua Lin,&nbsp;Zhongwei Shen\",\"doi\":\"10.1002/cpa.22186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we study critical sets of solutions <span></span><math>\\n <semantics>\\n <msub>\\n <mi>u</mi>\\n <mi>ε</mi>\\n </msub>\\n <annotation>$u_\\\\varepsilon$</annotation>\\n </semantics></math> of second-order elliptic equations in divergence form with rapidly oscillating and periodic coefficients. Under some condition on the first-order correctors, we show that the <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>d</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(d-2)$</annotation>\\n </semantics></math>-dimensional Hausdorff measures of the critical sets are bounded uniformly with respect to the period <span></span><math>\\n <semantics>\\n <mi>ε</mi>\\n <annotation>$\\\\varepsilon$</annotation>\\n </semantics></math>, provided that doubling indices for solutions are bounded. The key step is an estimate of “turning” of an approximate tangent map, the projection of a non-constant solution <span></span><math>\\n <semantics>\\n <msub>\\n <mi>u</mi>\\n <mi>ε</mi>\\n </msub>\\n <annotation>$u_\\\\varepsilon$</annotation>\\n </semantics></math> onto the subspace of spherical harmonics of order <span></span><math>\\n <semantics>\\n <mi>ℓ</mi>\\n <annotation>$\\\\ell$</annotation>\\n </semantics></math>, when the doubling index for <span></span><math>\\n <semantics>\\n <msub>\\n <mi>u</mi>\\n <mi>ε</mi>\\n </msub>\\n <annotation>$u_\\\\varepsilon$</annotation>\\n </semantics></math> on a sphere <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>∂</mi>\\n <mi>B</mi>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>r</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\partial B(0, r)$</annotation>\\n </semantics></math> is trapped between <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ℓ</mi>\\n <mo>−</mo>\\n <mi>δ</mi>\\n </mrow>\\n <annotation>$\\\\ell -\\\\delta$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ℓ</mi>\\n <mo>+</mo>\\n <mi>δ</mi>\\n </mrow>\\n <annotation>$\\\\ell +\\\\delta$</annotation>\\n </semantics></math>, for <span></span><math>\\n <semantics>\\n <mi>r</mi>\\n <annotation>$r$</annotation>\\n </semantics></math> between 1 and a minimal radius <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>r</mi>\\n <mo>∗</mo>\\n </msup>\\n <mo>≥</mo>\\n <msub>\\n <mi>C</mi>\\n <mn>0</mn>\\n </msub>\\n <mi>ε</mi>\\n </mrow>\\n <annotation>$r^*\\\\ge C_0\\\\varepsilon$</annotation>\\n </semantics></math>. This estimate is proved by using harmonic approximation successively. With a suitable <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$L^2$</annotation>\\n </semantics></math> renormalization as well as rescaling we are able to control the accumulated errors introduced by homogenization and projection. Our proof also gives uniform bounds for Minkowski contents of the critical sets.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22186\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22186","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有快速振荡和周期系数的散度型二阶椭圆方程的临界解集ε $u_\varepsilon$。在一阶校正器的某些条件下,我们证明了临界集的(d−2)$(d-2)$维Hausdorff测度在周期ε上是一致有界的,假设解的加倍指标是有界的。关键步骤是估计一个近似切线映射的“转弯”,即一个非常数解uε $u_\varepsilon$在阶为r的球谐波子空间上的投影,当一个球∂B(0,r) $\partial B(0, r)$上的uε $u_\varepsilon$的加倍指数被捕获在r−δ $\ell -\delta$和r +δ $\ell +\delta$之间时,r介于1和最小半径r∗≥C0ε $r^*\ge C_0\varepsilon$之间。用调和逼近相继证明了这一估计。通过适当的L2重整化和重新缩放,我们可以控制均匀化和投影引入的累积误差。我们的证明也给出了临界集的闵可夫斯基内容的一致界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Critical sets of solutions of elliptic equations in periodic homogenization

In this paper we study critical sets of solutions u ε $u_\varepsilon$ of second-order elliptic equations in divergence form with rapidly oscillating and periodic coefficients. Under some condition on the first-order correctors, we show that the ( d 2 ) $(d-2)$ -dimensional Hausdorff measures of the critical sets are bounded uniformly with respect to the period ε $\varepsilon$ , provided that doubling indices for solutions are bounded. The key step is an estimate of “turning” of an approximate tangent map, the projection of a non-constant solution u ε $u_\varepsilon$ onto the subspace of spherical harmonics of order $\ell$ , when the doubling index for u ε $u_\varepsilon$ on a sphere B ( 0 , r ) $\partial B(0, r)$ is trapped between δ $\ell -\delta$ and + δ $\ell +\delta$ , for r $r$ between 1 and a minimal radius r C 0 ε $r^*\ge C_0\varepsilon$ . This estimate is proved by using harmonic approximation successively. With a suitable L 2 $L^2$ renormalization as well as rescaling we are able to control the accumulated errors introduced by homogenization and projection. Our proof also gives uniform bounds for Minkowski contents of the critical sets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信