少数单色有界度图的平铺边彩色图

IF 1 2区 数学 Q1 MATHEMATICS
Jan Corsten, Walner Mendonça
{"title":"少数单色有界度图的平铺边彩色图","authors":"Jan Corsten, Walner Mendonça","doi":"10.1007/s00493-023-00072-1","DOIUrl":null,"url":null,"abstract":"<p>We prove that for all integers <span>\\(\\Delta ,r \\ge 2\\)</span>, there is a constant <span>\\(C = C(\\Delta ,r) &gt;0\\)</span> such that the following is true for every sequence <span>\\({\\mathcal {F}}= \\{F_1, F_2, \\ldots \\}\\)</span> of graphs with <span>\\(v(F_n) = n\\)</span> and <span>\\(\\Delta (F_n) \\le \\Delta \\)</span>, for each <span>\\(n \\in {\\mathbb {N}}\\)</span>. In every <i>r</i>-edge-coloured <span>\\(K_n\\)</span>, there is a collection of at most <i>C</i> monochromatic copies from <span>\\({\\mathcal {F}}\\)</span> whose vertex-sets partition <span>\\(V(K_n)\\)</span>. This makes progress on a conjecture of Grinshpun and Sárközy.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"27 20","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tiling Edge-Coloured Graphs with Few Monochromatic Bounded-Degree Graphs\",\"authors\":\"Jan Corsten, Walner Mendonça\",\"doi\":\"10.1007/s00493-023-00072-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that for all integers <span>\\\\(\\\\Delta ,r \\\\ge 2\\\\)</span>, there is a constant <span>\\\\(C = C(\\\\Delta ,r) &gt;0\\\\)</span> such that the following is true for every sequence <span>\\\\({\\\\mathcal {F}}= \\\\{F_1, F_2, \\\\ldots \\\\}\\\\)</span> of graphs with <span>\\\\(v(F_n) = n\\\\)</span> and <span>\\\\(\\\\Delta (F_n) \\\\le \\\\Delta \\\\)</span>, for each <span>\\\\(n \\\\in {\\\\mathbb {N}}\\\\)</span>. In every <i>r</i>-edge-coloured <span>\\\\(K_n\\\\)</span>, there is a collection of at most <i>C</i> monochromatic copies from <span>\\\\({\\\\mathcal {F}}\\\\)</span> whose vertex-sets partition <span>\\\\(V(K_n)\\\\)</span>. This makes progress on a conjecture of Grinshpun and Sárközy.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"27 20\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-023-00072-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-023-00072-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们证明,对于所有整数\(\Delta ,r \ge 2\),存在一个常数\(C = C(\Delta ,r) >0\),使得对于含有\(v(F_n) = n\)和\(\Delta (F_n) \le \Delta \)的图的每一个序列\({\mathcal {F}}= \{F_1, F_2, \ldots \}\),对于每一个\(n \in {\mathbb {N}}\),都成立如下式。在每个r边颜色的\(K_n\)中,有一个来自\({\mathcal {F}}\)的最多C个单色副本的集合,其顶点集分区为\(V(K_n)\)。这在Grinshpun和Sárközy的猜想上取得了进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tiling Edge-Coloured Graphs with Few Monochromatic Bounded-Degree Graphs

Tiling Edge-Coloured Graphs with Few Monochromatic Bounded-Degree Graphs

We prove that for all integers \(\Delta ,r \ge 2\), there is a constant \(C = C(\Delta ,r) >0\) such that the following is true for every sequence \({\mathcal {F}}= \{F_1, F_2, \ldots \}\) of graphs with \(v(F_n) = n\) and \(\Delta (F_n) \le \Delta \), for each \(n \in {\mathbb {N}}\). In every r-edge-coloured \(K_n\), there is a collection of at most C monochromatic copies from \({\mathcal {F}}\) whose vertex-sets partition \(V(K_n)\). This makes progress on a conjecture of Grinshpun and Sárközy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信