Melİh Barsbey, Riza ÖZçelİk, Alperen Bağ, Berk Atil, Arzucan ÖZgür, Elif Ozkirimli
{"title":"一种用于训练稳健药物-靶标亲和力预测模型的计算软件:pydebiasedta。","authors":"Melİh Barsbey, Riza ÖZçelİk, Alperen Bağ, Berk Atil, Arzucan ÖZgür, Elif Ozkirimli","doi":"10.1089/cmb.2023.0194","DOIUrl":null,"url":null,"abstract":"<p><p>\n <b>Robust generalization of drug-target affinity (DTA) prediction models is a notoriously difficult problem in computational drug discovery. In this article, we present pydebiaseddta: a computational software for improving the generalizability of DTA prediction models to novel ligands and/or proteins. pydebiaseddta serves as the practical implementation of the DebiasedDTA training framework, which advocates modifying the training distribution to mitigate the effect of spurious correlations in the training data set that leads to substantially degraded performance for novel ligands and proteins. Written in Python programming language, pydebiaseddta combines a user-friendly streamlined interface with a feature-rich and highly modifiable architecture. With this article we introduce our software, showcase its main functionalities, and describe practical ways for new users to engage with it.</b>\n </p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":"30 11","pages":"1240-1245"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Computational Software for Training Robust Drug-Target Affinity Prediction Models: pydebiaseddta.\",\"authors\":\"Melİh Barsbey, Riza ÖZçelİk, Alperen Bağ, Berk Atil, Arzucan ÖZgür, Elif Ozkirimli\",\"doi\":\"10.1089/cmb.2023.0194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>\\n <b>Robust generalization of drug-target affinity (DTA) prediction models is a notoriously difficult problem in computational drug discovery. In this article, we present pydebiaseddta: a computational software for improving the generalizability of DTA prediction models to novel ligands and/or proteins. pydebiaseddta serves as the practical implementation of the DebiasedDTA training framework, which advocates modifying the training distribution to mitigate the effect of spurious correlations in the training data set that leads to substantially degraded performance for novel ligands and proteins. Written in Python programming language, pydebiaseddta combines a user-friendly streamlined interface with a feature-rich and highly modifiable architecture. With this article we introduce our software, showcase its main functionalities, and describe practical ways for new users to engage with it.</b>\\n </p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\"30 11\",\"pages\":\"1240-1245\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2023.0194\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0194","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A Computational Software for Training Robust Drug-Target Affinity Prediction Models: pydebiaseddta.
Robust generalization of drug-target affinity (DTA) prediction models is a notoriously difficult problem in computational drug discovery. In this article, we present pydebiaseddta: a computational software for improving the generalizability of DTA prediction models to novel ligands and/or proteins. pydebiaseddta serves as the practical implementation of the DebiasedDTA training framework, which advocates modifying the training distribution to mitigate the effect of spurious correlations in the training data set that leads to substantially degraded performance for novel ligands and proteins. Written in Python programming language, pydebiaseddta combines a user-friendly streamlined interface with a feature-rich and highly modifiable architecture. With this article we introduce our software, showcase its main functionalities, and describe practical ways for new users to engage with it.
期刊介绍:
Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics.
Journal of Computational Biology coverage includes:
-Genomics
-Mathematical modeling and simulation
-Distributed and parallel biological computing
-Designing biological databases
-Pattern matching and pattern detection
-Linking disparate databases and data
-New tools for computational biology
-Relational and object-oriented database technology for bioinformatics
-Biological expert system design and use
-Reasoning by analogy, hypothesis formation, and testing by machine
-Management of biological databases