最大体积增长的Calabi-Yau流形上的次二次调和函数

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Shih-Kai Chiu
{"title":"最大体积增长的Calabi-Yau流形上的次二次调和函数","authors":"Shih-Kai Chiu","doi":"10.1002/cpa.22182","DOIUrl":null,"url":null,"abstract":"<p>On a complete Calabi-Yau manifold <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> with maximal volume growth, a harmonic function with subquadratic polynomial growth is the real part of a holomorphic function. This generalizes a result of Conlon-Hein. We prove this result by proving a Liouville-type theorem for harmonic 1-forms, which follows from a new local <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <annotation>$L^2$</annotation>\n </semantics></math> estimate of the exterior derivative.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22182","citationCount":"0","resultStr":"{\"title\":\"Subquadratic harmonic functions on Calabi-Yau manifolds with maximal volume growth\",\"authors\":\"Shih-Kai Chiu\",\"doi\":\"10.1002/cpa.22182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>On a complete Calabi-Yau manifold <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> with maximal volume growth, a harmonic function with subquadratic polynomial growth is the real part of a holomorphic function. This generalizes a result of Conlon-Hein. We prove this result by proving a Liouville-type theorem for harmonic 1-forms, which follows from a new local <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$L^2$</annotation>\\n </semantics></math> estimate of the exterior derivative.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22182\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22182\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22182","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在具有极大体积增长的完全Calabi-Yau流形M上,具有次二次多项式增长的调和函数是全纯函数的实部。这概括了Conlon-Hein的结果。我们通过证明调和1型的liouville型定理来证明这一结果,该定理由外导数的一个新的局部L2估计推导而来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subquadratic harmonic functions on Calabi-Yau manifolds with maximal volume growth

On a complete Calabi-Yau manifold M $M$ with maximal volume growth, a harmonic function with subquadratic polynomial growth is the real part of a holomorphic function. This generalizes a result of Conlon-Hein. We prove this result by proving a Liouville-type theorem for harmonic 1-forms, which follows from a new local L 2 $L^2$ estimate of the exterior derivative.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信