Martin Weber Kusk, Søren Hess, Oke Gerke, Shane J Foley
{"title":"ct衍生左心室射血分数的剂量降低潜力:模拟研究。","authors":"Martin Weber Kusk, Søren Hess, Oke Gerke, Shane J Foley","doi":"10.3390/tomography9060164","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Measuring left ventricular ejection fraction (LVEF) is important for detecting heart failure, e.g., in treatment with potentially cardiotoxic chemotherapy. MRI is considered the reference standard for LVEF, but availability may be limited and claustrophobia or metal implants still present challenges. CT has been shown to be accurate and would be advantageous, as LVEF could be measured in conjunction with routine chest-abdomen-pelvis oncology CT. However, the use of CT is not recommended due to the excessive radiation dose. This study aimed to explore the potential for dose reduction using simulation. Using an anthropomorphic heart phantom scanned at 13 dose levels, a noise simulation algorithm was developed to introduce controlled Poisson noise. Filtered backprojection parameters were iteratively tested to minimise differences in myocardium-to-ventricle contrast/noise ratio, as well as structural similarity index (SSIM) differences between real and simulated images at all dose levels. Fifty-one clinical CT coronary angiographies, scanned with full dose through end-systolic and -diastolic phases, were located retrospectively. Using the developed algorithm, noise was introduced corresponding to 25, 10, 5 and 2% of the original dose level. LVEF was measured using clinical software (Syngo.via VB50) with papillary muscles in and excluded from the LV volume. At each dose level, LVEF was compared to the 100% dose level, using Bland-Altman analysis. The effective dose was calculated from DLP using a conversion factor of 0.026 mSv/mGycm.</p><p><strong>Results: </strong>In the clinical images, mean CTDIvol and DLP were 47.1 mGy and 771.9 mGycm, respectively (effective dose 20.0 mSv). Measurements with papillary muscles excluded did not exhibit statistically significant LVEF bias to full-dose images at 25, 10 and 5% simulated dose. At 2% dose, a significant bias of 4.4% was found. With papillary muscles included, small but significant biases were found at all simulated dose levels.</p><p><strong>Conclusion: </strong>Provided that measurements are performed with papillary muscles excluded from the LV volume, the dose can be reduced by a factor of 20 without significantly affecting LVEF measurements. This corresponds to an effective dose of 1 mSv. CT can potentially be used for LVEF measurement with minimal excessive radiation.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"9 6","pages":"2089-2102"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10661257/pdf/","citationCount":"0","resultStr":"{\"title\":\"Potential for Dose Reduction in CT-Derived Left Ventricular Ejection Fraction: A Simulation Study.\",\"authors\":\"Martin Weber Kusk, Søren Hess, Oke Gerke, Shane J Foley\",\"doi\":\"10.3390/tomography9060164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Measuring left ventricular ejection fraction (LVEF) is important for detecting heart failure, e.g., in treatment with potentially cardiotoxic chemotherapy. MRI is considered the reference standard for LVEF, but availability may be limited and claustrophobia or metal implants still present challenges. CT has been shown to be accurate and would be advantageous, as LVEF could be measured in conjunction with routine chest-abdomen-pelvis oncology CT. However, the use of CT is not recommended due to the excessive radiation dose. This study aimed to explore the potential for dose reduction using simulation. Using an anthropomorphic heart phantom scanned at 13 dose levels, a noise simulation algorithm was developed to introduce controlled Poisson noise. Filtered backprojection parameters were iteratively tested to minimise differences in myocardium-to-ventricle contrast/noise ratio, as well as structural similarity index (SSIM) differences between real and simulated images at all dose levels. Fifty-one clinical CT coronary angiographies, scanned with full dose through end-systolic and -diastolic phases, were located retrospectively. Using the developed algorithm, noise was introduced corresponding to 25, 10, 5 and 2% of the original dose level. LVEF was measured using clinical software (Syngo.via VB50) with papillary muscles in and excluded from the LV volume. At each dose level, LVEF was compared to the 100% dose level, using Bland-Altman analysis. The effective dose was calculated from DLP using a conversion factor of 0.026 mSv/mGycm.</p><p><strong>Results: </strong>In the clinical images, mean CTDIvol and DLP were 47.1 mGy and 771.9 mGycm, respectively (effective dose 20.0 mSv). Measurements with papillary muscles excluded did not exhibit statistically significant LVEF bias to full-dose images at 25, 10 and 5% simulated dose. At 2% dose, a significant bias of 4.4% was found. With papillary muscles included, small but significant biases were found at all simulated dose levels.</p><p><strong>Conclusion: </strong>Provided that measurements are performed with papillary muscles excluded from the LV volume, the dose can be reduced by a factor of 20 without significantly affecting LVEF measurements. This corresponds to an effective dose of 1 mSv. CT can potentially be used for LVEF measurement with minimal excessive radiation.</p>\",\"PeriodicalId\":51330,\"journal\":{\"name\":\"Tomography\",\"volume\":\"9 6\",\"pages\":\"2089-2102\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10661257/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tomography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/tomography9060164\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography9060164","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Potential for Dose Reduction in CT-Derived Left Ventricular Ejection Fraction: A Simulation Study.
Background: Measuring left ventricular ejection fraction (LVEF) is important for detecting heart failure, e.g., in treatment with potentially cardiotoxic chemotherapy. MRI is considered the reference standard for LVEF, but availability may be limited and claustrophobia or metal implants still present challenges. CT has been shown to be accurate and would be advantageous, as LVEF could be measured in conjunction with routine chest-abdomen-pelvis oncology CT. However, the use of CT is not recommended due to the excessive radiation dose. This study aimed to explore the potential for dose reduction using simulation. Using an anthropomorphic heart phantom scanned at 13 dose levels, a noise simulation algorithm was developed to introduce controlled Poisson noise. Filtered backprojection parameters were iteratively tested to minimise differences in myocardium-to-ventricle contrast/noise ratio, as well as structural similarity index (SSIM) differences between real and simulated images at all dose levels. Fifty-one clinical CT coronary angiographies, scanned with full dose through end-systolic and -diastolic phases, were located retrospectively. Using the developed algorithm, noise was introduced corresponding to 25, 10, 5 and 2% of the original dose level. LVEF was measured using clinical software (Syngo.via VB50) with papillary muscles in and excluded from the LV volume. At each dose level, LVEF was compared to the 100% dose level, using Bland-Altman analysis. The effective dose was calculated from DLP using a conversion factor of 0.026 mSv/mGycm.
Results: In the clinical images, mean CTDIvol and DLP were 47.1 mGy and 771.9 mGycm, respectively (effective dose 20.0 mSv). Measurements with papillary muscles excluded did not exhibit statistically significant LVEF bias to full-dose images at 25, 10 and 5% simulated dose. At 2% dose, a significant bias of 4.4% was found. With papillary muscles included, small but significant biases were found at all simulated dose levels.
Conclusion: Provided that measurements are performed with papillary muscles excluded from the LV volume, the dose can be reduced by a factor of 20 without significantly affecting LVEF measurements. This corresponds to an effective dose of 1 mSv. CT can potentially be used for LVEF measurement with minimal excessive radiation.
TomographyMedicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍:
TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine.
Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians.
Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.