{"title":"在小鼠模型中,敲低ZEB1通过抑制Wnt/β-catenin信号通路抑制增生性瘢痕形成","authors":"Rui Jin, Zhizhong Deng, Fei Liu, Lin Lu, Feixue Ding, Yirui Shen, Hayson Chenyu Wang, Mengling Chang, Zhiyou Peng, Xiao Liang","doi":"10.1097/PRS.0000000000011190","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hypertrophic scars (HSs) cause functional impairment and cosmetic deformities following operations or burns (30% to 94%). There is no target therapy yet because the pathogenesis of HS progression is not well known. In tissue fibrosis, abnormal up-regulation of zinc finger E-box binding homeobox 1 (ZEB1) is an important cause for extracellular matrix (ECM) overexpression, which is the main molecular change in HSs. The authors hypothesized that ZEB1 knockdown inhibits HS formation.</p><p><strong>Methods: </strong>ZEB1 expression in human HS and transforming growth factor-β1-induced fibroblasts were identified by polymerase chain reaction (PCR) and Western blotting. ZEB1 was knocked down by small interfering RNA in HS fibroblasts (HSFs) and the mouse HS model (C57/BL6 male mice aged 8 to 12 weeks). After 8 hours of transfection, HSFs were subjected to PCR, Western blotting, and Cell Counting Kit-8 apoptosis, migration, and contraction assays. Mouse HSs were analyzed by hematoxylin and eosin staining, PCR, and Western blotting after 56 days.</p><p><strong>Results: </strong>ZEB1 was up-regulated in HS tissue (2.0-fold; P < 0.001). ZEB1 knockdown inhibited HSF activity (0.6-fold to 0.7-fold; P < 0.001); the expression of fibrotic markers (0.4-fold to 0.6-fold; P < 0.001); and β-catenin, cyclinD1, and c-Myc expression (0.5-fold; P < 0.001). In mouse HS models, HS skin thickness was less (1.60 ± 0.40 mm versus 4.04 ± 0.36 mm; P < 0.001) after ZEB1 knockdown.</p><p><strong>Conclusions: </strong>ZEB1 knockdown inhibits HS formation both in vitro and in vivo. However, this is an in vitro mouse model, and more validation is needed.</p><p><strong>Clinical relevance statement: </strong>The discovery of ZEB1 as a mediator of HS formation might be a potential therapeutic target in HS treatment.</p>","PeriodicalId":20128,"journal":{"name":"Plastic and reconstructive surgery","volume":" ","pages":"991-1001"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512622/pdf/","citationCount":"0","resultStr":"{\"title\":\"Knockdown of ZEB1 Inhibits Hypertrophic Scarring through Suppressing the Wnt/β-Catenin Signaling Pathway in a Mouse Model.\",\"authors\":\"Rui Jin, Zhizhong Deng, Fei Liu, Lin Lu, Feixue Ding, Yirui Shen, Hayson Chenyu Wang, Mengling Chang, Zhiyou Peng, Xiao Liang\",\"doi\":\"10.1097/PRS.0000000000011190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Hypertrophic scars (HSs) cause functional impairment and cosmetic deformities following operations or burns (30% to 94%). There is no target therapy yet because the pathogenesis of HS progression is not well known. In tissue fibrosis, abnormal up-regulation of zinc finger E-box binding homeobox 1 (ZEB1) is an important cause for extracellular matrix (ECM) overexpression, which is the main molecular change in HSs. The authors hypothesized that ZEB1 knockdown inhibits HS formation.</p><p><strong>Methods: </strong>ZEB1 expression in human HS and transforming growth factor-β1-induced fibroblasts were identified by polymerase chain reaction (PCR) and Western blotting. ZEB1 was knocked down by small interfering RNA in HS fibroblasts (HSFs) and the mouse HS model (C57/BL6 male mice aged 8 to 12 weeks). After 8 hours of transfection, HSFs were subjected to PCR, Western blotting, and Cell Counting Kit-8 apoptosis, migration, and contraction assays. Mouse HSs were analyzed by hematoxylin and eosin staining, PCR, and Western blotting after 56 days.</p><p><strong>Results: </strong>ZEB1 was up-regulated in HS tissue (2.0-fold; P < 0.001). ZEB1 knockdown inhibited HSF activity (0.6-fold to 0.7-fold; P < 0.001); the expression of fibrotic markers (0.4-fold to 0.6-fold; P < 0.001); and β-catenin, cyclinD1, and c-Myc expression (0.5-fold; P < 0.001). In mouse HS models, HS skin thickness was less (1.60 ± 0.40 mm versus 4.04 ± 0.36 mm; P < 0.001) after ZEB1 knockdown.</p><p><strong>Conclusions: </strong>ZEB1 knockdown inhibits HS formation both in vitro and in vivo. However, this is an in vitro mouse model, and more validation is needed.</p><p><strong>Clinical relevance statement: </strong>The discovery of ZEB1 as a mediator of HS formation might be a potential therapeutic target in HS treatment.</p>\",\"PeriodicalId\":20128,\"journal\":{\"name\":\"Plastic and reconstructive surgery\",\"volume\":\" \",\"pages\":\"991-1001\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512622/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plastic and reconstructive surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/PRS.0000000000011190\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plastic and reconstructive surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/PRS.0000000000011190","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"SURGERY","Score":null,"Total":0}
Knockdown of ZEB1 Inhibits Hypertrophic Scarring through Suppressing the Wnt/β-Catenin Signaling Pathway in a Mouse Model.
Background: Hypertrophic scars (HSs) cause functional impairment and cosmetic deformities following operations or burns (30% to 94%). There is no target therapy yet because the pathogenesis of HS progression is not well known. In tissue fibrosis, abnormal up-regulation of zinc finger E-box binding homeobox 1 (ZEB1) is an important cause for extracellular matrix (ECM) overexpression, which is the main molecular change in HSs. The authors hypothesized that ZEB1 knockdown inhibits HS formation.
Methods: ZEB1 expression in human HS and transforming growth factor-β1-induced fibroblasts were identified by polymerase chain reaction (PCR) and Western blotting. ZEB1 was knocked down by small interfering RNA in HS fibroblasts (HSFs) and the mouse HS model (C57/BL6 male mice aged 8 to 12 weeks). After 8 hours of transfection, HSFs were subjected to PCR, Western blotting, and Cell Counting Kit-8 apoptosis, migration, and contraction assays. Mouse HSs were analyzed by hematoxylin and eosin staining, PCR, and Western blotting after 56 days.
Results: ZEB1 was up-regulated in HS tissue (2.0-fold; P < 0.001). ZEB1 knockdown inhibited HSF activity (0.6-fold to 0.7-fold; P < 0.001); the expression of fibrotic markers (0.4-fold to 0.6-fold; P < 0.001); and β-catenin, cyclinD1, and c-Myc expression (0.5-fold; P < 0.001). In mouse HS models, HS skin thickness was less (1.60 ± 0.40 mm versus 4.04 ± 0.36 mm; P < 0.001) after ZEB1 knockdown.
Conclusions: ZEB1 knockdown inhibits HS formation both in vitro and in vivo. However, this is an in vitro mouse model, and more validation is needed.
Clinical relevance statement: The discovery of ZEB1 as a mediator of HS formation might be a potential therapeutic target in HS treatment.
期刊介绍:
For more than 70 years Plastic and Reconstructive Surgery® has been the one consistently excellent reference for every specialist who uses plastic surgery techniques or works in conjunction with a plastic surgeon. Plastic and Reconstructive Surgery® , the official journal of the American Society of Plastic Surgeons, is a benefit of Society membership, and is also available on a subscription basis.
Plastic and Reconstructive Surgery® brings subscribers up-to-the-minute reports on the latest techniques and follow-up for all areas of plastic and reconstructive surgery, including breast reconstruction, experimental studies, maxillofacial reconstruction, hand and microsurgery, burn repair, cosmetic surgery, as well as news on medicolegal issues. The cosmetic section provides expanded coverage on new procedures and techniques and offers more cosmetic-specific content than any other journal. All subscribers enjoy full access to the Journal''s website, which features broadcast quality videos of reconstructive and cosmetic procedures, podcasts, comprehensive article archives dating to 1946, and additional benefits offered by the newly-redesigned website.