Zhifei Ding;Jiahao Han;Rongtao Qian;Liming Shen;Siru Chen;Lingxin Yu;Yu Zhu;Richen Liu
{"title":"基于特征袋的集成数据交互时间相关性分析","authors":"Zhifei Ding;Jiahao Han;Rongtao Qian;Liming Shen;Siru Chen;Lingxin Yu;Yu Zhu;Richen Liu","doi":"10.1109/TBDATA.2023.3324482","DOIUrl":null,"url":null,"abstract":"We propose eBoF, a novel time-varying ensemble data visualization approach based on the Bag-of-Features (BoF) model. In the eBoF model, we extract a simple and monotone interval from all target variables of ensemble scalar data as a local feature patch. Each local feature of a semantically simple single interval can be defined as a feature patch within the BoF model, with the duration of each interval (i.e., feature patch) serving as its frequency. Feature clusters in ensemble runs are then identified based on the similarity of temporal correlations. eBoF generates clusters along with their probability distributions across all feature patches while preserving the geo-spatial information, which is often lost in traditional topic modeling or clustering algorithms. The probability distribution across different clusters can help to generate reasonable clustering results, evaluated by domain knowledge. We conduct case studies and performance tests to evaluate the eBoF model and gather feedback from domain experts to further refine it. Evaluation results suggest the proposed eBoF can provide insightful and comprehensive evidence on ensemble simulation data analysis.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"9 6","pages":"1726-1737"},"PeriodicalIF":7.5000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"eBoF: Interactive Temporal Correlation Analysis for Ensemble Data Based on Bag-of-Features\",\"authors\":\"Zhifei Ding;Jiahao Han;Rongtao Qian;Liming Shen;Siru Chen;Lingxin Yu;Yu Zhu;Richen Liu\",\"doi\":\"10.1109/TBDATA.2023.3324482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose eBoF, a novel time-varying ensemble data visualization approach based on the Bag-of-Features (BoF) model. In the eBoF model, we extract a simple and monotone interval from all target variables of ensemble scalar data as a local feature patch. Each local feature of a semantically simple single interval can be defined as a feature patch within the BoF model, with the duration of each interval (i.e., feature patch) serving as its frequency. Feature clusters in ensemble runs are then identified based on the similarity of temporal correlations. eBoF generates clusters along with their probability distributions across all feature patches while preserving the geo-spatial information, which is often lost in traditional topic modeling or clustering algorithms. The probability distribution across different clusters can help to generate reasonable clustering results, evaluated by domain knowledge. We conduct case studies and performance tests to evaluate the eBoF model and gather feedback from domain experts to further refine it. Evaluation results suggest the proposed eBoF can provide insightful and comprehensive evidence on ensemble simulation data analysis.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"9 6\",\"pages\":\"1726-1737\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10284987/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10284987/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
eBoF: Interactive Temporal Correlation Analysis for Ensemble Data Based on Bag-of-Features
We propose eBoF, a novel time-varying ensemble data visualization approach based on the Bag-of-Features (BoF) model. In the eBoF model, we extract a simple and monotone interval from all target variables of ensemble scalar data as a local feature patch. Each local feature of a semantically simple single interval can be defined as a feature patch within the BoF model, with the duration of each interval (i.e., feature patch) serving as its frequency. Feature clusters in ensemble runs are then identified based on the similarity of temporal correlations. eBoF generates clusters along with their probability distributions across all feature patches while preserving the geo-spatial information, which is often lost in traditional topic modeling or clustering algorithms. The probability distribution across different clusters can help to generate reasonable clustering results, evaluated by domain knowledge. We conduct case studies and performance tests to evaluate the eBoF model and gather feedback from domain experts to further refine it. Evaluation results suggest the proposed eBoF can provide insightful and comprehensive evidence on ensemble simulation data analysis.
期刊介绍:
The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.