g型结构的无扭连接

IF 0.6 4区 数学 Q3 MATHEMATICS
Brice Flamencourt
{"title":"g型结构的无扭连接","authors":"Brice Flamencourt","doi":"10.1016/j.difgeo.2023.102075","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that for a Lie group <span><math><msub><mrow><mi>SO</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo><mo>⊂</mo><mi>G</mi><mo>⊂</mo><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, any <em>G</em>-structure on a smooth manifold can be endowed with a torsion free connection which is locally the Levi-Civita connection of a Riemannian metric in a given conformal class. In this process, we classify the admissible groups.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Torsion-free connections on G-structures\",\"authors\":\"Brice Flamencourt\",\"doi\":\"10.1016/j.difgeo.2023.102075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that for a Lie group <span><math><msub><mrow><mi>SO</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo><mo>⊂</mo><mi>G</mi><mo>⊂</mo><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, any <em>G</em>-structure on a smooth manifold can be endowed with a torsion free connection which is locally the Levi-Civita connection of a Riemannian metric in a given conformal class. In this process, we classify the admissible groups.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224523001018\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224523001018","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

证明了对于李群SOn(R)∧G∧GLn(R),光滑流形上的任何G结构都可以被赋予一个无扭转连接,该连接局部是给定共形类中黎曼度规的Levi-Civita连接。在这个过程中,我们对可接受的群体进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Torsion-free connections on G-structures

We prove that for a Lie group SOn(R)GGLn(R), any G-structure on a smooth manifold can be endowed with a torsion free connection which is locally the Levi-Civita connection of a Riemannian metric in a given conformal class. In this process, we classify the admissible groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信