{"title":"g型结构的无扭连接","authors":"Brice Flamencourt","doi":"10.1016/j.difgeo.2023.102075","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that for a Lie group <span><math><msub><mrow><mi>SO</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo><mo>⊂</mo><mi>G</mi><mo>⊂</mo><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, any <em>G</em>-structure on a smooth manifold can be endowed with a torsion free connection which is locally the Levi-Civita connection of a Riemannian metric in a given conformal class. In this process, we classify the admissible groups.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"91 ","pages":"Article 102075"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Torsion-free connections on G-structures\",\"authors\":\"Brice Flamencourt\",\"doi\":\"10.1016/j.difgeo.2023.102075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that for a Lie group <span><math><msub><mrow><mi>SO</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo><mo>⊂</mo><mi>G</mi><mo>⊂</mo><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, any <em>G</em>-structure on a smooth manifold can be endowed with a torsion free connection which is locally the Levi-Civita connection of a Riemannian metric in a given conformal class. In this process, we classify the admissible groups.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"91 \",\"pages\":\"Article 102075\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224523001018\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224523001018","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We prove that for a Lie group , any G-structure on a smooth manifold can be endowed with a torsion free connection which is locally the Levi-Civita connection of a Riemannian metric in a given conformal class. In this process, we classify the admissible groups.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.