sikalpha模型在COVID-19预测和情景预测中的变化

IF 3 3区 医学 Q2 INFECTIOUS DISEASES
Ajitesh Srivastava
{"title":"sikalpha模型在COVID-19预测和情景预测中的变化","authors":"Ajitesh Srivastava","doi":"10.1016/j.epidem.2023.100729","DOIUrl":null,"url":null,"abstract":"<div><p>We proposed the SIkJalpha model at the beginning of the COVID-19 pandemic (early 2020). Since then, as the pandemic evolved, more complexities were added to capture crucial factors and variables that can assist with projecting desired future scenarios. Throughout the pandemic, multi-model collaborative efforts have been organized to predict short-term outcomes (cases, deaths, and hospitalizations) of COVID-19 and long-term scenario projections. We have been participating in five such efforts. This paper presents the evolution of the SIkJalpha model and its many versions that have been used to submit to these collaborative efforts since the beginning of the pandemic. Specifically, we show that the SIkJalpha model is an approximation of a class of epidemiological models. We demonstrate how the model can be used to incorporate various complexities, including under-reporting, multiple variants, waning of immunity, and contact rates, and to generate probabilistic outputs.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"45 ","pages":"Article 100729"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755436523000658/pdfft?md5=929f79386e57f7e3861ecdc50ce83ff4&pid=1-s2.0-S1755436523000658-main.pdf","citationCount":"2","resultStr":"{\"title\":\"The variations of SIkJalpha model for COVID-19 forecasting and scenario projections\",\"authors\":\"Ajitesh Srivastava\",\"doi\":\"10.1016/j.epidem.2023.100729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We proposed the SIkJalpha model at the beginning of the COVID-19 pandemic (early 2020). Since then, as the pandemic evolved, more complexities were added to capture crucial factors and variables that can assist with projecting desired future scenarios. Throughout the pandemic, multi-model collaborative efforts have been organized to predict short-term outcomes (cases, deaths, and hospitalizations) of COVID-19 and long-term scenario projections. We have been participating in five such efforts. This paper presents the evolution of the SIkJalpha model and its many versions that have been used to submit to these collaborative efforts since the beginning of the pandemic. Specifically, we show that the SIkJalpha model is an approximation of a class of epidemiological models. We demonstrate how the model can be used to incorporate various complexities, including under-reporting, multiple variants, waning of immunity, and contact rates, and to generate probabilistic outputs.</p></div>\",\"PeriodicalId\":49206,\"journal\":{\"name\":\"Epidemics\",\"volume\":\"45 \",\"pages\":\"Article 100729\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1755436523000658/pdfft?md5=929f79386e57f7e3861ecdc50ce83ff4&pid=1-s2.0-S1755436523000658-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755436523000658\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755436523000658","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 2

摘要

我们在COVID-19大流行之初(2020年初)提出了sikalpha模型。自那时以来,随着大流行的演变,为了捕捉有助于预测预期未来情景的关键因素和变量,工作变得更加复杂。在大流行期间,组织了多模式协作工作,以预测COVID-19的短期结果(病例、死亡和住院)和长期情景预测。我们已经参加了五个这样的努力。本文介绍了sikalpha模型及其自大流行开始以来用于提交这些合作努力的许多版本的演变。具体来说,我们表明sikalpha模型是一类流行病学模型的近似值。我们演示了如何使用该模型来整合各种复杂性,包括低报、多种变体、免疫力下降和接触率,并生成概率输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The variations of SIkJalpha model for COVID-19 forecasting and scenario projections

We proposed the SIkJalpha model at the beginning of the COVID-19 pandemic (early 2020). Since then, as the pandemic evolved, more complexities were added to capture crucial factors and variables that can assist with projecting desired future scenarios. Throughout the pandemic, multi-model collaborative efforts have been organized to predict short-term outcomes (cases, deaths, and hospitalizations) of COVID-19 and long-term scenario projections. We have been participating in five such efforts. This paper presents the evolution of the SIkJalpha model and its many versions that have been used to submit to these collaborative efforts since the beginning of the pandemic. Specifically, we show that the SIkJalpha model is an approximation of a class of epidemiological models. We demonstrate how the model can be used to incorporate various complexities, including under-reporting, multiple variants, waning of immunity, and contact rates, and to generate probabilistic outputs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epidemics
Epidemics INFECTIOUS DISEASES-
CiteScore
6.00
自引率
7.90%
发文量
92
审稿时长
140 days
期刊介绍: Epidemics publishes papers on infectious disease dynamics in the broadest sense. Its scope covers both within-host dynamics of infectious agents and dynamics at the population level, particularly the interaction between the two. Areas of emphasis include: spread, transmission, persistence, implications and population dynamics of infectious diseases; population and public health as well as policy aspects of control and prevention; dynamics at the individual level; interaction with the environment, ecology and evolution of infectious diseases, as well as population genetics of infectious agents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信