高维稀疏CCA的统计推断。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2023-11-17 eCollection Date: 2023-12-01 DOI:10.1093/imaiai/iaad040
Nilanjana Laha, Nathan Huey, Brent Coull, Rajarshi Mukherjee
{"title":"高维稀疏CCA的统计推断。","authors":"Nilanjana Laha, Nathan Huey, Brent Coull, Rajarshi Mukherjee","doi":"10.1093/imaiai/iaad040","DOIUrl":null,"url":null,"abstract":"<p><p>We consider asymptotically exact inference on the leading canonical correlation directions and strengths between two high-dimensional vectors under sparsity restrictions. In this regard, our main contribution is developing a novel representation of the Canonical Correlation Analysis problem, based on which one can operationalize a one-step bias correction on reasonable initial estimators. Our analytic results in this regard are adaptive over suitable structural restrictions of the high-dimensional nuisance parameters, which, in this set-up, correspond to the covariance matrices of the variables of interest. We further supplement the theoretical guarantees behind our procedures with extensive numerical studies.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On statistical inference with high-dimensional sparse CCA.\",\"authors\":\"Nilanjana Laha, Nathan Huey, Brent Coull, Rajarshi Mukherjee\",\"doi\":\"10.1093/imaiai/iaad040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider asymptotically exact inference on the leading canonical correlation directions and strengths between two high-dimensional vectors under sparsity restrictions. In this regard, our main contribution is developing a novel representation of the Canonical Correlation Analysis problem, based on which one can operationalize a one-step bias correction on reasonable initial estimators. Our analytic results in this regard are adaptive over suitable structural restrictions of the high-dimensional nuisance parameters, which, in this set-up, correspond to the covariance matrices of the variables of interest. We further supplement the theoretical guarantees behind our procedures with extensive numerical studies.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imaiai/iaad040\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imaiai/iaad040","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在稀疏性条件下,研究了两个高维向量间的典型相关方向和强度的渐近精确推断。在这方面,我们的主要贡献是开发了典型相关分析问题的新表示,在此基础上,可以对合理的初始估计量进行一步偏差校正。在这方面,我们的分析结果在高维干扰参数的适当结构限制下是自适应的,在这种设置中,这些参数对应于感兴趣变量的协方差矩阵。我们进一步补充理论保证背后的程序与广泛的数值研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On statistical inference with high-dimensional sparse CCA.

We consider asymptotically exact inference on the leading canonical correlation directions and strengths between two high-dimensional vectors under sparsity restrictions. In this regard, our main contribution is developing a novel representation of the Canonical Correlation Analysis problem, based on which one can operationalize a one-step bias correction on reasonable initial estimators. Our analytic results in this regard are adaptive over suitable structural restrictions of the high-dimensional nuisance parameters, which, in this set-up, correspond to the covariance matrices of the variables of interest. We further supplement the theoretical guarantees behind our procedures with extensive numerical studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信