Ayşegül Gümüş, Nastaran Sadeghian, Morteza Sadeghi, Parham Taslimi, Selçuk Gümüş
{"title":"新型三唑桥接喹啉-蒽衍生物:合成、表征、分子对接、电子和酶抑制性能评价。","authors":"Ayşegül Gümüş, Nastaran Sadeghian, Morteza Sadeghi, Parham Taslimi, Selçuk Gümüş","doi":"10.1080/07391102.2023.2283870","DOIUrl":null,"url":null,"abstract":"<p><p>Two novel quinoline-anthracene conjugates comprising styrylquinoline and anthracene moieties linked by triazole bridges were designed and synthesized in good yields. These molecules were determined for some metabolic enzymes activities. Results indicated that the synthetic molecules exhibited powerful inhibitory actions against all aims as compared to the control molecules. K<sub>i</sub> values of novel compound <b>QA-1</b> for hCA I, hCA II, AChE, and <i>α</i>-glycosidase enzymes were obtained of 20.18 ± 2.46 µM, 14.63 ± 1.14 µM, 71.48 ± 7.76 nM, 401.35 ± 36.84 nM, respectively. Both compounds showed promising candidate complexes for drug development with considerable <i>in vitro</i> different enzymes inhibitory activities. The binding conformations patterns and interaction of <b>QA-1</b> and <b>QA-2</b> compounds with α-glucosidase, acetycholinesterase, carbonic anhydrase-I and carbonic anhydrase-II enzymes were investigated through molecular docking profiles. The docking outputs are consistent with the Ki and IC<sub>50</sub> values of novel compounds. Three dimensional geometries and electronic properties of the title compounds were obtained by the applicational computational approach at B3LYP/6-31++G(d,p) level of theory.Communicated by Ramaswamy H. Sarma.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"843-858"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel triazole bridged quinoline-anthracene derivatives: synthesis, characterization, molecular docking, evaluation of electronic and enzyme inhibitory properties.\",\"authors\":\"Ayşegül Gümüş, Nastaran Sadeghian, Morteza Sadeghi, Parham Taslimi, Selçuk Gümüş\",\"doi\":\"10.1080/07391102.2023.2283870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two novel quinoline-anthracene conjugates comprising styrylquinoline and anthracene moieties linked by triazole bridges were designed and synthesized in good yields. These molecules were determined for some metabolic enzymes activities. Results indicated that the synthetic molecules exhibited powerful inhibitory actions against all aims as compared to the control molecules. K<sub>i</sub> values of novel compound <b>QA-1</b> for hCA I, hCA II, AChE, and <i>α</i>-glycosidase enzymes were obtained of 20.18 ± 2.46 µM, 14.63 ± 1.14 µM, 71.48 ± 7.76 nM, 401.35 ± 36.84 nM, respectively. Both compounds showed promising candidate complexes for drug development with considerable <i>in vitro</i> different enzymes inhibitory activities. The binding conformations patterns and interaction of <b>QA-1</b> and <b>QA-2</b> compounds with α-glucosidase, acetycholinesterase, carbonic anhydrase-I and carbonic anhydrase-II enzymes were investigated through molecular docking profiles. The docking outputs are consistent with the Ki and IC<sub>50</sub> values of novel compounds. Three dimensional geometries and electronic properties of the title compounds were obtained by the applicational computational approach at B3LYP/6-31++G(d,p) level of theory.Communicated by Ramaswamy H. Sarma.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"843-858\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2023.2283870\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2023.2283870","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
设计并合成了两种新型喹啉-蒽缀合物,由苯乙烯喹啉和蒽基团通过三唑桥连接而成。这些分子被用来测定一些代谢酶的活性。结果表明,与对照分子相比,合成分子对所有目标均表现出较强的抑制作用。新化合物QA-1对hCA I、hCA II、AChE和α-糖苷酶的Ki值分别为20.18±2.46µM、14.63±1.14µM、71.48±7.76 nM、401.35±36.84 nM。这两种化合物都显示出有希望的候选药物开发复合物,具有相当大的体外不同酶抑制活性。通过分子对接谱研究了QA-1和QA-2化合物与α-葡萄糖苷酶、乙酰胆碱酯酶、碳酸酐酶i和碳酸酐酶ii酶的结合构象模式和相互作用。对接输出与新化合物的Ki和IC50值一致。采用B3LYP/6-31++G(d,p)理论水平的应用计算方法获得了标题化合物的三维几何形状和电子性质。由Ramaswamy H. Sarma传达。
Novel triazole bridged quinoline-anthracene derivatives: synthesis, characterization, molecular docking, evaluation of electronic and enzyme inhibitory properties.
Two novel quinoline-anthracene conjugates comprising styrylquinoline and anthracene moieties linked by triazole bridges were designed and synthesized in good yields. These molecules were determined for some metabolic enzymes activities. Results indicated that the synthetic molecules exhibited powerful inhibitory actions against all aims as compared to the control molecules. Ki values of novel compound QA-1 for hCA I, hCA II, AChE, and α-glycosidase enzymes were obtained of 20.18 ± 2.46 µM, 14.63 ± 1.14 µM, 71.48 ± 7.76 nM, 401.35 ± 36.84 nM, respectively. Both compounds showed promising candidate complexes for drug development with considerable in vitro different enzymes inhibitory activities. The binding conformations patterns and interaction of QA-1 and QA-2 compounds with α-glucosidase, acetycholinesterase, carbonic anhydrase-I and carbonic anhydrase-II enzymes were investigated through molecular docking profiles. The docking outputs are consistent with the Ki and IC50 values of novel compounds. Three dimensional geometries and electronic properties of the title compounds were obtained by the applicational computational approach at B3LYP/6-31++G(d,p) level of theory.Communicated by Ramaswamy H. Sarma.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.