Senthilkumar Sethurathinam, Subburayan Veerasamy, Rameshbabu Arasamudi, Ravi P. Agarwal
{"title":"点源奇摄动对流-扩散时滞微分方程的渐近流线扩散有限元法","authors":"Senthilkumar Sethurathinam, Subburayan Veerasamy, Rameshbabu Arasamudi, Ravi P. Agarwal","doi":"10.1002/cmm4.1201","DOIUrl":null,"url":null,"abstract":"<p>In this article, we presented an asymptotic SDFEM for singularly perturbed convection diffusion type differential difference equations with point source term. First, the solution is decomposed into two functions, among them one is the solution of delay differential equation and other one is the solution of differential equation with point source. Furthermore, using the asymptotic expansion approximation, the delay differential equation is modified as a nondelay differential equations. Streamline diffusion finite element methods are applied to approximate the solutions of the two problems. We prove that the present method gives an almost second-order convergence in maximum norm and square integrable norm, whereas first-order convergence in <math>\n <mrow>\n <msup>\n <mrow>\n <mi>H</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow></math> norm. Numerical results are presented to validate the theoretical results.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmm4.1201","citationCount":"0","resultStr":"{\"title\":\"An asymptotic streamline diffusion finite element method for singularly perturbed convection-diffusion delay differential equations with point source\",\"authors\":\"Senthilkumar Sethurathinam, Subburayan Veerasamy, Rameshbabu Arasamudi, Ravi P. Agarwal\",\"doi\":\"10.1002/cmm4.1201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we presented an asymptotic SDFEM for singularly perturbed convection diffusion type differential difference equations with point source term. First, the solution is decomposed into two functions, among them one is the solution of delay differential equation and other one is the solution of differential equation with point source. Furthermore, using the asymptotic expansion approximation, the delay differential equation is modified as a nondelay differential equations. Streamline diffusion finite element methods are applied to approximate the solutions of the two problems. We prove that the present method gives an almost second-order convergence in maximum norm and square integrable norm, whereas first-order convergence in <math>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow></math> norm. Numerical results are presented to validate the theoretical results.</p>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmm4.1201\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
An asymptotic streamline diffusion finite element method for singularly perturbed convection-diffusion delay differential equations with point source
In this article, we presented an asymptotic SDFEM for singularly perturbed convection diffusion type differential difference equations with point source term. First, the solution is decomposed into two functions, among them one is the solution of delay differential equation and other one is the solution of differential equation with point source. Furthermore, using the asymptotic expansion approximation, the delay differential equation is modified as a nondelay differential equations. Streamline diffusion finite element methods are applied to approximate the solutions of the two problems. We prove that the present method gives an almost second-order convergence in maximum norm and square integrable norm, whereas first-order convergence in norm. Numerical results are presented to validate the theoretical results.