{"title":"用ECM算法估计具有方差分布和可能无界密度的向量ARMA模型","authors":"Thanakorn Nitithumbundit, Jennifer S.K. Chan","doi":"10.1111/anzs.12340","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The simultaneous analysis of several financial time series is salient in portfolio setting and risk management. This paper proposes a novel alternating expectation conditional maximisation (AECM) algorithm to estimate the vector autoregressive moving average (VARMA) model with variance gamma (VG) error distribution in the multivariate skewed setting. We explain why the VARMA-VG model is suitable for high-frequency returns (HFRs) because VG distribution provides thick tails to capture the high kurtosis in the data and unbounded central density further captures the majority of near-zero HFRs. The distribution can also be expressed in normal-mean-variance mixtures to facilitate model implementation using the Bayesian or expectation maximisation (EM) approach. We adopt the EM approach to avoid the time-consuming Markov chain Monto Carlo sampling and solve the unbounded density problem in the classical maximum likelihood estimation. We conduct extensive simulation studies to evaluate the accuracy of the proposed AECM estimator and apply the models to analyse the dependency between two HFR series from the time zones that only differ by one hour.</p>\n </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":"63 3","pages":"485-516"},"PeriodicalIF":0.8000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ECM algorithm for estimating vector ARMA model with variance gamma distribution and possible unbounded density\",\"authors\":\"Thanakorn Nitithumbundit, Jennifer S.K. Chan\",\"doi\":\"10.1111/anzs.12340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The simultaneous analysis of several financial time series is salient in portfolio setting and risk management. This paper proposes a novel alternating expectation conditional maximisation (AECM) algorithm to estimate the vector autoregressive moving average (VARMA) model with variance gamma (VG) error distribution in the multivariate skewed setting. We explain why the VARMA-VG model is suitable for high-frequency returns (HFRs) because VG distribution provides thick tails to capture the high kurtosis in the data and unbounded central density further captures the majority of near-zero HFRs. The distribution can also be expressed in normal-mean-variance mixtures to facilitate model implementation using the Bayesian or expectation maximisation (EM) approach. We adopt the EM approach to avoid the time-consuming Markov chain Monto Carlo sampling and solve the unbounded density problem in the classical maximum likelihood estimation. We conduct extensive simulation studies to evaluate the accuracy of the proposed AECM estimator and apply the models to analyse the dependency between two HFR series from the time zones that only differ by one hour.</p>\\n </div>\",\"PeriodicalId\":55428,\"journal\":{\"name\":\"Australian & New Zealand Journal of Statistics\",\"volume\":\"63 3\",\"pages\":\"485-516\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian & New Zealand Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12340\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12340","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
ECM algorithm for estimating vector ARMA model with variance gamma distribution and possible unbounded density
The simultaneous analysis of several financial time series is salient in portfolio setting and risk management. This paper proposes a novel alternating expectation conditional maximisation (AECM) algorithm to estimate the vector autoregressive moving average (VARMA) model with variance gamma (VG) error distribution in the multivariate skewed setting. We explain why the VARMA-VG model is suitable for high-frequency returns (HFRs) because VG distribution provides thick tails to capture the high kurtosis in the data and unbounded central density further captures the majority of near-zero HFRs. The distribution can also be expressed in normal-mean-variance mixtures to facilitate model implementation using the Bayesian or expectation maximisation (EM) approach. We adopt the EM approach to avoid the time-consuming Markov chain Monto Carlo sampling and solve the unbounded density problem in the classical maximum likelihood estimation. We conduct extensive simulation studies to evaluate the accuracy of the proposed AECM estimator and apply the models to analyse the dependency between two HFR series from the time zones that only differ by one hour.
期刊介绍:
The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association.
The main body of the journal is divided into three sections.
The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data.
The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context.
The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.