图像分割使用简单的马尔可夫场模型

F.R Hansen, H Elliott
{"title":"图像分割使用简单的马尔可夫场模型","authors":"F.R Hansen,&nbsp;H Elliott","doi":"10.1016/0146-664X(82)90040-5","DOIUrl":null,"url":null,"abstract":"<div><p>By modelling a picture as a two-state Markov field, MAP estimation techniques are used to develop suboptimal but computationally tractable binary segmentation algorithms. The algorithms are shown to perform well at low signal-to-noise ratios, and analytical procedures are developed for estimating the Markov field transition probabilities. In addition, extensions of this approach to the multispectral and multiregion cases are discussed.</p></div>","PeriodicalId":100313,"journal":{"name":"Computer Graphics and Image Processing","volume":"20 2","pages":"Pages 101-132"},"PeriodicalIF":0.0000,"publicationDate":"1982-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0146-664X(82)90040-5","citationCount":"0","resultStr":"{\"title\":\"Image segmentation using simple Markov field models\",\"authors\":\"F.R Hansen,&nbsp;H Elliott\",\"doi\":\"10.1016/0146-664X(82)90040-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>By modelling a picture as a two-state Markov field, MAP estimation techniques are used to develop suboptimal but computationally tractable binary segmentation algorithms. The algorithms are shown to perform well at low signal-to-noise ratios, and analytical procedures are developed for estimating the Markov field transition probabilities. In addition, extensions of this approach to the multispectral and multiregion cases are discussed.</p></div>\",\"PeriodicalId\":100313,\"journal\":{\"name\":\"Computer Graphics and Image Processing\",\"volume\":\"20 2\",\"pages\":\"Pages 101-132\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1982-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0146-664X(82)90040-5\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0146664X82900405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0146664X82900405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过将图像建模为两态马尔可夫场,MAP估计技术用于开发次优但计算上易于处理的二值分割算法。该算法在低信噪比下表现良好,并开发了用于估计马尔可夫场转移概率的分析程序。此外,还讨论了该方法在多光谱和多区域情况下的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image segmentation using simple Markov field models

By modelling a picture as a two-state Markov field, MAP estimation techniques are used to develop suboptimal but computationally tractable binary segmentation algorithms. The algorithms are shown to perform well at low signal-to-noise ratios, and analytical procedures are developed for estimating the Markov field transition probabilities. In addition, extensions of this approach to the multispectral and multiregion cases are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信