{"title":"涡跳舞","authors":"Tadashi Tokieda","doi":"10.1016/S0764-4442(01)02162-0","DOIUrl":null,"url":null,"abstract":"<div><p>The motion of point vortices in a 2-dimensional ideal fluid is treated as a Hamiltonian system. We describe an infinite family of periodic solutions for an even number of vortices on the sphere, the ellipsoid, the torus, and other surfaces, as well as some of their relative variants.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 10","pages":"Pages 943-946"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02162-0","citationCount":"0","resultStr":"{\"title\":\"Tourbillons dansants\",\"authors\":\"Tadashi Tokieda\",\"doi\":\"10.1016/S0764-4442(01)02162-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The motion of point vortices in a 2-dimensional ideal fluid is treated as a Hamiltonian system. We describe an infinite family of periodic solutions for an even number of vortices on the sphere, the ellipsoid, the torus, and other surfaces, as well as some of their relative variants.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 10\",\"pages\":\"Pages 943-946\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02162-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201021620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The motion of point vortices in a 2-dimensional ideal fluid is treated as a Hamiltonian system. We describe an infinite family of periodic solutions for an even number of vortices on the sphere, the ellipsoid, the torus, and other surfaces, as well as some of their relative variants.