涡跳舞

Tadashi Tokieda
{"title":"涡跳舞","authors":"Tadashi Tokieda","doi":"10.1016/S0764-4442(01)02162-0","DOIUrl":null,"url":null,"abstract":"<div><p>The motion of point vortices in a 2-dimensional ideal fluid is treated as a Hamiltonian system. We describe an infinite family of periodic solutions for an even number of vortices on the sphere, the ellipsoid, the torus, and other surfaces, as well as some of their relative variants.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 10","pages":"Pages 943-946"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02162-0","citationCount":"0","resultStr":"{\"title\":\"Tourbillons dansants\",\"authors\":\"Tadashi Tokieda\",\"doi\":\"10.1016/S0764-4442(01)02162-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The motion of point vortices in a 2-dimensional ideal fluid is treated as a Hamiltonian system. We describe an infinite family of periodic solutions for an even number of vortices on the sphere, the ellipsoid, the torus, and other surfaces, as well as some of their relative variants.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 10\",\"pages\":\"Pages 943-946\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02162-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201021620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将二维理想流体中点涡的运动视为哈密顿系统。我们描述了球面、椭球面、环面和其他表面上的偶数涡旋的无限族周期解,以及它们的一些相对变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tourbillons dansants

The motion of point vortices in a 2-dimensional ideal fluid is treated as a Hamiltonian system. We describe an infinite family of periodic solutions for an even number of vortices on the sphere, the ellipsoid, the torus, and other surfaces, as well as some of their relative variants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信