Helmholtz问题特征值分析的对偶互易边界元方法

D.P.N. Kontoni, P.W. Partridge, C.A. Brebbia
{"title":"Helmholtz问题特征值分析的对偶互易边界元方法","authors":"D.P.N. Kontoni,&nbsp;P.W. Partridge,&nbsp;C.A. Brebbia","doi":"10.1016/0961-3552(91)90040-B","DOIUrl":null,"url":null,"abstract":"<div><p>The dual reciprocity method (DRM) is a general technique for taking domain integrals to the boundary in BEM analysis. In this paper it is applied to the eigenvalue analysis of Helmholtz problems. A solution procedure is presented which avoids the complex eigenvalues usually associated with the non-symmetric BEM matrices and which is at the same time easy to implement. Characteristics numerical examples are used to illustrate the proposed method.</p></div>","PeriodicalId":100044,"journal":{"name":"Advances in Engineering Software and Workstations","volume":"13 1","pages":"Pages 2-16"},"PeriodicalIF":0.0000,"publicationDate":"1991-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0961-3552(91)90040-B","citationCount":"0","resultStr":"{\"title\":\"The dual reciprocity boundary element method for the eigenvalue analysis of Helmholtz problems\",\"authors\":\"D.P.N. Kontoni,&nbsp;P.W. Partridge,&nbsp;C.A. Brebbia\",\"doi\":\"10.1016/0961-3552(91)90040-B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The dual reciprocity method (DRM) is a general technique for taking domain integrals to the boundary in BEM analysis. In this paper it is applied to the eigenvalue analysis of Helmholtz problems. A solution procedure is presented which avoids the complex eigenvalues usually associated with the non-symmetric BEM matrices and which is at the same time easy to implement. Characteristics numerical examples are used to illustrate the proposed method.</p></div>\",\"PeriodicalId\":100044,\"journal\":{\"name\":\"Advances in Engineering Software and Workstations\",\"volume\":\"13 1\",\"pages\":\"Pages 2-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0961-3552(91)90040-B\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Engineering Software and Workstations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/096135529190040B\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software and Workstations","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/096135529190040B","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对偶互易法是边界元分析中求取域积分到边界的一种常用方法。本文将其应用于亥姆霍兹问题的特征值分析。提出了一种求解方法,避免了非对称边界元矩阵的复杂特征值,同时又易于实现。用数值算例说明了该方法的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The dual reciprocity boundary element method for the eigenvalue analysis of Helmholtz problems

The dual reciprocity method (DRM) is a general technique for taking domain integrals to the boundary in BEM analysis. In this paper it is applied to the eigenvalue analysis of Helmholtz problems. A solution procedure is presented which avoids the complex eigenvalues usually associated with the non-symmetric BEM matrices and which is at the same time easy to implement. Characteristics numerical examples are used to illustrate the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信