紧黎曼流形之间p调和映射的热方程

Ali Fardoun, Rachid Regbaoui
{"title":"紧黎曼流形之间p调和映射的热方程","authors":"Ali Fardoun,&nbsp;Rachid Regbaoui","doi":"10.1016/S0764-4442(01)02176-0","DOIUrl":null,"url":null,"abstract":"<div><p>Let (<em>M</em><sup><em>m</em></sup>,<em>g</em>) and (<em>N</em><sup><em>n</em></sup>,<em>h</em>) (<em>m</em>⩾2) be two compact Riemannian manifolds without boundary. When Riem<sub><em>N</em></sub>⩽0, we show the global existence of a weak solution of the heat equation for <em>p</em>-harmonic maps (<em>p</em>&gt;1) and the convergence of this solution at infinity to a regular weakly <em>p</em>-harmonic map; so generalizing the result of Eells–Sampson for harmonic maps to the case that <em>p</em>&gt;1.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 11","pages":"Pages 979-984"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02176-0","citationCount":"0","resultStr":"{\"title\":\"Équation de la chaleur pour les applications p-harmoniques entre variétés riemanniennes compactes\",\"authors\":\"Ali Fardoun,&nbsp;Rachid Regbaoui\",\"doi\":\"10.1016/S0764-4442(01)02176-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let (<em>M</em><sup><em>m</em></sup>,<em>g</em>) and (<em>N</em><sup><em>n</em></sup>,<em>h</em>) (<em>m</em>⩾2) be two compact Riemannian manifolds without boundary. When Riem<sub><em>N</em></sub>⩽0, we show the global existence of a weak solution of the heat equation for <em>p</em>-harmonic maps (<em>p</em>&gt;1) and the convergence of this solution at infinity to a regular weakly <em>p</em>-harmonic map; so generalizing the result of Eells–Sampson for harmonic maps to the case that <em>p</em>&gt;1.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 11\",\"pages\":\"Pages 979-984\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02176-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201021760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设(Mm,g)和(Nn,h) (m小于2)是两个没有边界的紧凑黎曼流形。当RiemN≤0时,我们证明了p调和映射(p>1)的热方程的一个弱解的整体存在性,以及该解在无穷远处收敛于正则弱p调和映射;因此将Eells-Sampson关于调和映射的结果推广到p>1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Équation de la chaleur pour les applications p-harmoniques entre variétés riemanniennes compactes

Let (Mm,g) and (Nn,h) (m⩾2) be two compact Riemannian manifolds without boundary. When RiemN⩽0, we show the global existence of a weak solution of the heat equation for p-harmonic maps (p>1) and the convergence of this solution at infinity to a regular weakly p-harmonic map; so generalizing the result of Eells–Sampson for harmonic maps to the case that p>1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信