利用机器学习的最陡下降算法估计两个大地测量基准之间的七个变换参数

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ikechukwu Kalu , Christopher E. Ndehedehe , Onuwa Okwuashi , Aniekan E. Eyoh
{"title":"利用机器学习的最陡下降算法估计两个大地测量基准之间的七个变换参数","authors":"Ikechukwu Kalu ,&nbsp;Christopher E. Ndehedehe ,&nbsp;Onuwa Okwuashi ,&nbsp;Aniekan E. Eyoh","doi":"10.1016/j.acags.2022.100086","DOIUrl":null,"url":null,"abstract":"<div><p>This study evaluates the steepest descent algorithm as a tool for root mean square (RMS) error optimization in geodetic reference systems to improve the integrity of transformation. With an initial RMS error estimate of 0.01830m, the negative gradient direction was applied through the steepest optimization leading to a final RMS error estimate of 0.00051m. Using the exact line search mode with a one-point step size of 0.1, we achieved the minimum values in less than sixty iterations, regardless of the slow convergence rate of the steepest descent algorithm.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"14 ","pages":"Article 100086"},"PeriodicalIF":2.6000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590197422000088/pdfft?md5=eb92d5772ded0edd7f0a090531d968d3&pid=1-s2.0-S2590197422000088-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Estimating the seven transformational parameters between two geodetic datums using the steepest descent algorithm of machine learning\",\"authors\":\"Ikechukwu Kalu ,&nbsp;Christopher E. Ndehedehe ,&nbsp;Onuwa Okwuashi ,&nbsp;Aniekan E. Eyoh\",\"doi\":\"10.1016/j.acags.2022.100086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study evaluates the steepest descent algorithm as a tool for root mean square (RMS) error optimization in geodetic reference systems to improve the integrity of transformation. With an initial RMS error estimate of 0.01830m, the negative gradient direction was applied through the steepest optimization leading to a final RMS error estimate of 0.00051m. Using the exact line search mode with a one-point step size of 0.1, we achieved the minimum values in less than sixty iterations, regardless of the slow convergence rate of the steepest descent algorithm.</p></div>\",\"PeriodicalId\":33804,\"journal\":{\"name\":\"Applied Computing and Geosciences\",\"volume\":\"14 \",\"pages\":\"Article 100086\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590197422000088/pdfft?md5=eb92d5772ded0edd7f0a090531d968d3&pid=1-s2.0-S2590197422000088-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing and Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590197422000088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197422000088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了最陡下降算法作为大地测量参考系统中均方根误差优化的工具,以提高变换的完整性。初始RMS误差估计为0.01830m,通过最陡优化应用负梯度方向,最终RMS误差估计为0.00051m。使用精确的直线搜索模式,单点步长为0.1,我们在不到60次迭代中获得了最小值,而不考虑最速下降算法的缓慢收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating the seven transformational parameters between two geodetic datums using the steepest descent algorithm of machine learning

This study evaluates the steepest descent algorithm as a tool for root mean square (RMS) error optimization in geodetic reference systems to improve the integrity of transformation. With an initial RMS error estimate of 0.01830m, the negative gradient direction was applied through the steepest optimization leading to a final RMS error estimate of 0.00051m. Using the exact line search mode with a one-point step size of 0.1, we achieved the minimum values in less than sixty iterations, regardless of the slow convergence rate of the steepest descent algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信