瓶颈极值

Jack Edmonds , D.R. Fulkerson
{"title":"瓶颈极值","authors":"Jack Edmonds ,&nbsp;D.R. Fulkerson","doi":"10.1016/S0021-9800(70)80083-7","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>E</em> be a finite set. Call a family of mutually noncomparable subsets of <em>E</em> a clutter on <em>E</em>. It is shown that for any clutter <span><math><mi>ℛ</mi></math></span> on <em>E</em>, there exists a unique clutter <span><math><mi>ℒ</mi></math></span> on <em>E</em> such that, for any function <em>f</em> from <em>E</em> to real numbers,</p><p><span><span><span><math><mrow><mtable><mtr><mtd><mrow><mo>min</mo><mo>⁡</mo><mo>max</mo><mo>⁡</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo></mrow></mtd></mtr><mtr><mtd><mrow><mo>R</mo><msup><mo>∈</mo><mi>ℛ</mi></msup><mo>x</mo><msup><mo>∈</mo><mo>R</mo></msup></mrow></mtd></mtr></mtable><mtable><mtr><mtd><mrow><mo>max</mo><mo>⁡</mo><mo>min</mo><mo>⁡</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mo>S</mo><msup><mo>∈</mo><mi>ℒ</mi></msup><mo>x</mo><msup><mo>∈</mo><mo>S</mo></msup></mrow></mtd></mtr></mtable></mrow></math></span></span></span></p><p>Specifically, <span><math><mi>ℒ</mi></math></span> consists of the minimal subsets of <em>E</em> that have non-empty intersection with every member of <span><math><mi>ℛ</mi></math></span>. The pair <span><math><mrow><mrow><mo>(</mo><mrow><mi>ℛ</mi><mo>,</mo><mi>ℒ</mi></mrow><mo>)</mo></mrow></mrow></math></span> is called a blocking system on <em>E</em>. An algorithm is described and several examples of blockings systems are discussed.</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"8 3","pages":"Pages 299-306"},"PeriodicalIF":0.0000,"publicationDate":"1970-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80083-7","citationCount":"0","resultStr":"{\"title\":\"Bottleneck extrema\",\"authors\":\"Jack Edmonds ,&nbsp;D.R. Fulkerson\",\"doi\":\"10.1016/S0021-9800(70)80083-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>E</em> be a finite set. Call a family of mutually noncomparable subsets of <em>E</em> a clutter on <em>E</em>. It is shown that for any clutter <span><math><mi>ℛ</mi></math></span> on <em>E</em>, there exists a unique clutter <span><math><mi>ℒ</mi></math></span> on <em>E</em> such that, for any function <em>f</em> from <em>E</em> to real numbers,</p><p><span><span><span><math><mrow><mtable><mtr><mtd><mrow><mo>min</mo><mo>⁡</mo><mo>max</mo><mo>⁡</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo></mrow></mtd></mtr><mtr><mtd><mrow><mo>R</mo><msup><mo>∈</mo><mi>ℛ</mi></msup><mo>x</mo><msup><mo>∈</mo><mo>R</mo></msup></mrow></mtd></mtr></mtable><mtable><mtr><mtd><mrow><mo>max</mo><mo>⁡</mo><mo>min</mo><mo>⁡</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mo>S</mo><msup><mo>∈</mo><mi>ℒ</mi></msup><mo>x</mo><msup><mo>∈</mo><mo>S</mo></msup></mrow></mtd></mtr></mtable></mrow></math></span></span></span></p><p>Specifically, <span><math><mi>ℒ</mi></math></span> consists of the minimal subsets of <em>E</em> that have non-empty intersection with every member of <span><math><mi>ℛ</mi></math></span>. The pair <span><math><mrow><mrow><mo>(</mo><mrow><mi>ℛ</mi><mo>,</mo><mi>ℒ</mi></mrow><mo>)</mo></mrow></mrow></math></span> is called a blocking system on <em>E</em>. An algorithm is described and several examples of blockings systems are discussed.</p></div>\",\"PeriodicalId\":100765,\"journal\":{\"name\":\"Journal of Combinatorial Theory\",\"volume\":\"8 3\",\"pages\":\"Pages 299-306\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1970-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80083-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021980070800837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021980070800837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设E是一个有限集合。将E上的一组相互不可比较的子集称为E上的杂波。证明了对于E上的任意杂波∑,存在一个唯一的杂波∑E,使得对于从E到实数的任意函数f,min (max)∑f(x)=R∈∂x∈Rmax∈∂f(x)S∈∂x∈∂S,其中,∑由E的最小子集组成,且该最小子集与∈的每一个元素都有非空交。本文描述了e上的一个阻塞系统的算法,并讨论了阻塞系统的几个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bottleneck extrema

Let E be a finite set. Call a family of mutually noncomparable subsets of E a clutter on E. It is shown that for any clutter on E, there exists a unique clutter on E such that, for any function f from E to real numbers,

minmaxf(x)=RxRmaxminf(x)SxS

Specifically, consists of the minimal subsets of E that have non-empty intersection with every member of . The pair (,) is called a blocking system on E. An algorithm is described and several examples of blockings systems are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信