{"title":"关于不能碰到投注平面的那些表示基本问题,I","authors":"K. Wagner","doi":"10.1016/S0021-9800(70)80052-7","DOIUrl":null,"url":null,"abstract":"<div><p>Le <em>Γ</em> be the set of all finite graphs which are not embeddable into the projective plane. We write <em>G</em><sub>1</sub>≺<em>G</em><sub>2</sub>, if <em>G</em><sub>2</sub> is <em>homomorphic</em> to <em>G</em><sub>1</sub>, that is, if there is a subgraph <em>G</em>′<sub>2</sub> of <em>G</em><sub>2</sub> such that <em>G</em><sub>1</sub> can be obtained from <em>G</em>′<sub>2</sub> by contraction of edges in <em>G</em>′<sub>2</sub>. The subset of all minimal graphs in the partially ordered set <em>Γ</em><sub>≺</sub> is called the <em>minimal basis</em> of <em>Γ</em>. We denote this basis by M(<em>Γ</em>). Every graph of M(<em>Γ</em>) is called a minimal graph (of <em>Γ</em>). In a former paper [2], we determined all disconnected minimal graphs and all minimal graphs separable by one or two vertices. Hence, we need only consider three-connected minimal graphs. Let us say that in our Proposition 7 of [2] we omitted a bracket in <em>G</em><sub>14</sub>. In this graph, namely, the uppermost 2 must be replaced by <2>.</p><p>In the following we deal with two new cases, in which we succeed in determining the minimal graphs:</p><p>First, let us suppose that <em>G</em>∈M(<em>Γ</em>) has the properties: (1) <em>G</em> is (at least) three-connected and (2) there is a vertex <em>a</em> in <em>G</em> such that the graph <em>G/a</em> (that is, one has to destroy the vertex <em>a</em> and all edges of <em>G</em> incident to <em>a</em>) contains a topologic <em>K</em><sub>5</sub> but there exists no topologic <em>K</em><sub>3,3</sub> contained in <em>G/a</em>. We prove the <em>theorem</em> that there are exactly two graphs in M(<em>Γ</em>) satisfying (1) and (2). One of these graphs is the <em>G</em><sub>14</sub>. The other graph, denoted by <em>D</em>, can be obtained from the <em>K</em><sub>5</sub> where we let <em>T</em> be a triple of neighboring edges in the <em>K</em><sub>5</sub>, by inserting a new vertex on every edge of <em>T</em> and by then connecting these three new vertices through three edges with one further new vertex <em>a</em> lying outside the topologic <em>K</em><sub>5</sub> (see Figure 2).</p><p>Second, we consider non-planar graphs <em>G</em> with the property that <em>G/a</em> is planar for every vertex <em>a</em> of <em>G</em>. In another paper [3] these graphs have been called <em>nearly planar</em>. Our next question is: <em>Are there nearly planar graphs not being embeddable into the projective plane?</em> We prove the <em>theorem</em> that all nearly planar graphs can be embedded into the projective plane with a single exception of one graph <em>F</em>. This exceptional graph <em>F</em> consists of two disjoint <em>K</em><sub>4</sub> and four edges (<em>a<sub>i</sub>, b<sub>i</sub></em>), <em>i</em>=1,…, 4 which join the vertices <em>a<sub>i</sub></em> of the one <em>K</em><sub>4</sub> with the vertices <em>b<sub>i</sub></em> of the other <em>K</em><sub>4</sub>. We then show that this graph is a minimal graph of <em>Γ</em>. So, in the problem of determining the minimal basis of <em>Γ</em>, the case remains that one can assume: (1) There is a vertex <em>a</em> in <em>G</em> such that <em>G/a</em> contains a topologic <em>K</em><sub>3,3</sub> and (2) <em>G</em> is three-connected.</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"9 1","pages":"Pages 27-43"},"PeriodicalIF":0.0000,"publicationDate":"1970-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80052-7","citationCount":"0","resultStr":"{\"title\":\"Zum basisproblem der nicht in die projektive ebene einbettbaren graphen, I\",\"authors\":\"K. Wagner\",\"doi\":\"10.1016/S0021-9800(70)80052-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Le <em>Γ</em> be the set of all finite graphs which are not embeddable into the projective plane. We write <em>G</em><sub>1</sub>≺<em>G</em><sub>2</sub>, if <em>G</em><sub>2</sub> is <em>homomorphic</em> to <em>G</em><sub>1</sub>, that is, if there is a subgraph <em>G</em>′<sub>2</sub> of <em>G</em><sub>2</sub> such that <em>G</em><sub>1</sub> can be obtained from <em>G</em>′<sub>2</sub> by contraction of edges in <em>G</em>′<sub>2</sub>. The subset of all minimal graphs in the partially ordered set <em>Γ</em><sub>≺</sub> is called the <em>minimal basis</em> of <em>Γ</em>. We denote this basis by M(<em>Γ</em>). Every graph of M(<em>Γ</em>) is called a minimal graph (of <em>Γ</em>). In a former paper [2], we determined all disconnected minimal graphs and all minimal graphs separable by one or two vertices. Hence, we need only consider three-connected minimal graphs. Let us say that in our Proposition 7 of [2] we omitted a bracket in <em>G</em><sub>14</sub>. In this graph, namely, the uppermost 2 must be replaced by <2>.</p><p>In the following we deal with two new cases, in which we succeed in determining the minimal graphs:</p><p>First, let us suppose that <em>G</em>∈M(<em>Γ</em>) has the properties: (1) <em>G</em> is (at least) three-connected and (2) there is a vertex <em>a</em> in <em>G</em> such that the graph <em>G/a</em> (that is, one has to destroy the vertex <em>a</em> and all edges of <em>G</em> incident to <em>a</em>) contains a topologic <em>K</em><sub>5</sub> but there exists no topologic <em>K</em><sub>3,3</sub> contained in <em>G/a</em>. We prove the <em>theorem</em> that there are exactly two graphs in M(<em>Γ</em>) satisfying (1) and (2). One of these graphs is the <em>G</em><sub>14</sub>. The other graph, denoted by <em>D</em>, can be obtained from the <em>K</em><sub>5</sub> where we let <em>T</em> be a triple of neighboring edges in the <em>K</em><sub>5</sub>, by inserting a new vertex on every edge of <em>T</em> and by then connecting these three new vertices through three edges with one further new vertex <em>a</em> lying outside the topologic <em>K</em><sub>5</sub> (see Figure 2).</p><p>Second, we consider non-planar graphs <em>G</em> with the property that <em>G/a</em> is planar for every vertex <em>a</em> of <em>G</em>. In another paper [3] these graphs have been called <em>nearly planar</em>. Our next question is: <em>Are there nearly planar graphs not being embeddable into the projective plane?</em> We prove the <em>theorem</em> that all nearly planar graphs can be embedded into the projective plane with a single exception of one graph <em>F</em>. This exceptional graph <em>F</em> consists of two disjoint <em>K</em><sub>4</sub> and four edges (<em>a<sub>i</sub>, b<sub>i</sub></em>), <em>i</em>=1,…, 4 which join the vertices <em>a<sub>i</sub></em> of the one <em>K</em><sub>4</sub> with the vertices <em>b<sub>i</sub></em> of the other <em>K</em><sub>4</sub>. We then show that this graph is a minimal graph of <em>Γ</em>. So, in the problem of determining the minimal basis of <em>Γ</em>, the case remains that one can assume: (1) There is a vertex <em>a</em> in <em>G</em> such that <em>G/a</em> contains a topologic <em>K</em><sub>3,3</sub> and (2) <em>G</em> is three-connected.</p></div>\",\"PeriodicalId\":100765,\"journal\":{\"name\":\"Journal of Combinatorial Theory\",\"volume\":\"9 1\",\"pages\":\"Pages 27-43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1970-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80052-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021980070800527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021980070800527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Zum basisproblem der nicht in die projektive ebene einbettbaren graphen, I
Le Γ be the set of all finite graphs which are not embeddable into the projective plane. We write G1≺G2, if G2 is homomorphic to G1, that is, if there is a subgraph G′2 of G2 such that G1 can be obtained from G′2 by contraction of edges in G′2. The subset of all minimal graphs in the partially ordered set Γ≺ is called the minimal basis of Γ. We denote this basis by M(Γ). Every graph of M(Γ) is called a minimal graph (of Γ). In a former paper [2], we determined all disconnected minimal graphs and all minimal graphs separable by one or two vertices. Hence, we need only consider three-connected minimal graphs. Let us say that in our Proposition 7 of [2] we omitted a bracket in G14. In this graph, namely, the uppermost 2 must be replaced by <2>.
In the following we deal with two new cases, in which we succeed in determining the minimal graphs:
First, let us suppose that G∈M(Γ) has the properties: (1) G is (at least) three-connected and (2) there is a vertex a in G such that the graph G/a (that is, one has to destroy the vertex a and all edges of G incident to a) contains a topologic K5 but there exists no topologic K3,3 contained in G/a. We prove the theorem that there are exactly two graphs in M(Γ) satisfying (1) and (2). One of these graphs is the G14. The other graph, denoted by D, can be obtained from the K5 where we let T be a triple of neighboring edges in the K5, by inserting a new vertex on every edge of T and by then connecting these three new vertices through three edges with one further new vertex a lying outside the topologic K5 (see Figure 2).
Second, we consider non-planar graphs G with the property that G/a is planar for every vertex a of G. In another paper [3] these graphs have been called nearly planar. Our next question is: Are there nearly planar graphs not being embeddable into the projective plane? We prove the theorem that all nearly planar graphs can be embedded into the projective plane with a single exception of one graph F. This exceptional graph F consists of two disjoint K4 and four edges (ai, bi), i=1,…, 4 which join the vertices ai of the one K4 with the vertices bi of the other K4. We then show that this graph is a minimal graph of Γ. So, in the problem of determining the minimal basis of Γ, the case remains that one can assume: (1) There is a vertex a in G such that G/a contains a topologic K3,3 and (2) G is three-connected.