垂直视差、以自我为中心的距离与立体深度恒常性:一种新的解释。

P O Bishop
{"title":"垂直视差、以自我为中心的距离与立体深度恒常性:一种新的解释。","authors":"P O Bishop","doi":"10.1098/rspb.1989.0059","DOIUrl":null,"url":null,"abstract":"<p><p>There has long been a problem concerning the presence in the visual cortex of binocularly activated cells that are selective for vertical stimulus disparities because it is generally believed that only horizontal disparities contribute to stereoscopic depth perception. The accepted view is that stereoscopic depth estimates are only relative to the fixation point and that independent information from an extraretinal source is needed to scale for absolute or egocentric distance. Recently, however, theoretical computations have shown that egocentric distance can be estimated directly from vertical disparities without recourse to extraretinal sources. There has been little impetus to follow up these computations with experimental observations, because the vertical disparities that normally occur between the images in the two eyes have always been regarded as being too small to be of significance for visual perception and because experiments have consistently shown that our conscious appreciation of egocentric distance is rather crude and unreliable. Nevertheless, the veridicality of stereoscopic depth constancy indicates that accurate distance information is available to the visual system and that the information about egocentric distance and horizontal disparity are processed together so as to continually recalibrate the horizontal disparity values for different absolute distances. Computations show that the recalibration can be based directly on vertical disparities without the need for any intervening estimates of absolute distance. This may partly explain the relative crudity of our conscious appreciation of egocentric distance. From published data it has been possible to calculate the magnitude of the vertical disparities that the human visual system must be able to discriminate in order for depth constancy to have the observed level of veridicality. From published data on the induced effect it has also been possible to calculate the threshold values for the detection of vertical disparities by the visual system. These threshold values are smaller than those needed to provide for the recalibration of the horizontal disparities in the interests of veridical depth constancy. An outline is given of the known properties of the binocularly activated cells in the striate cortex that are able to discriminate and assess the vertical disparities. Experiments are proposed that should validate, or otherwise, the concepts put forward in this paper.</p>","PeriodicalId":54561,"journal":{"name":"Proceedings of the Royal Society of London Series B-Containing Papers of Abiological Character","volume":"237 1289","pages":"445-69"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1098/rspb.1989.0059","citationCount":"70","resultStr":"{\"title\":\"Vertical disparity, egocentric distance and stereoscopic depth constancy: a new interpretation.\",\"authors\":\"P O Bishop\",\"doi\":\"10.1098/rspb.1989.0059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There has long been a problem concerning the presence in the visual cortex of binocularly activated cells that are selective for vertical stimulus disparities because it is generally believed that only horizontal disparities contribute to stereoscopic depth perception. The accepted view is that stereoscopic depth estimates are only relative to the fixation point and that independent information from an extraretinal source is needed to scale for absolute or egocentric distance. Recently, however, theoretical computations have shown that egocentric distance can be estimated directly from vertical disparities without recourse to extraretinal sources. There has been little impetus to follow up these computations with experimental observations, because the vertical disparities that normally occur between the images in the two eyes have always been regarded as being too small to be of significance for visual perception and because experiments have consistently shown that our conscious appreciation of egocentric distance is rather crude and unreliable. Nevertheless, the veridicality of stereoscopic depth constancy indicates that accurate distance information is available to the visual system and that the information about egocentric distance and horizontal disparity are processed together so as to continually recalibrate the horizontal disparity values for different absolute distances. Computations show that the recalibration can be based directly on vertical disparities without the need for any intervening estimates of absolute distance. This may partly explain the relative crudity of our conscious appreciation of egocentric distance. From published data it has been possible to calculate the magnitude of the vertical disparities that the human visual system must be able to discriminate in order for depth constancy to have the observed level of veridicality. From published data on the induced effect it has also been possible to calculate the threshold values for the detection of vertical disparities by the visual system. These threshold values are smaller than those needed to provide for the recalibration of the horizontal disparities in the interests of veridical depth constancy. An outline is given of the known properties of the binocularly activated cells in the striate cortex that are able to discriminate and assess the vertical disparities. Experiments are proposed that should validate, or otherwise, the concepts put forward in this paper.</p>\",\"PeriodicalId\":54561,\"journal\":{\"name\":\"Proceedings of the Royal Society of London Series B-Containing Papers of Abiological Character\",\"volume\":\"237 1289\",\"pages\":\"445-69\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1098/rspb.1989.0059\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of London Series B-Containing Papers of Abiological Character\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspb.1989.0059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London Series B-Containing Papers of Abiological Character","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspb.1989.0059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

摘要

长期以来,人们一直对视觉皮层中存在的双眼激活细胞有一个问题,即它们对垂直刺激差异有选择性,因为人们普遍认为只有水平刺激差异才有助于立体深度感知。公认的观点是,立体深度估计仅相对于注视点,并且需要来自视网膜外源的独立信息来衡量绝对或以自我为中心的距离。然而,最近的理论计算表明,自我中心距离可以直接从垂直差距估计,而无需求助于外部来源。没有什么动力去用实验观察来跟踪这些计算,因为通常在两只眼睛的图像之间发生的垂直差异一直被认为太小,对视觉感知没有意义,因为实验一直表明,我们对自我中心距离的有意识的欣赏是相当粗糙和不可靠的。然而,立体深度恒定的真实性表明视觉系统获得了准确的距离信息,并将自心距离和水平视差信息一起处理,从而不断重新校准不同绝对距离的水平视差值。计算表明,重新校准可以直接基于垂直差,而不需要任何中间估计的绝对距离。这可能部分解释了我们对以自我为中心的距离的有意识的欣赏相对粗糙。从已发表的数据中,可以计算出人类视觉系统必须能够区分的垂直差异的大小,以便使深度恒定具有观察到的真实性水平。根据已发表的关于诱导效应的数据,还可以计算出视觉系统检测垂直差异的阈值。这些阈值比为了保持垂直深度恒定而重新校准水平差所需的阈值要小。概述了条纹皮层中能够区分和评估垂直差异的双目激活细胞的已知特性。提出了实验来验证或否定本文提出的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vertical disparity, egocentric distance and stereoscopic depth constancy: a new interpretation.

There has long been a problem concerning the presence in the visual cortex of binocularly activated cells that are selective for vertical stimulus disparities because it is generally believed that only horizontal disparities contribute to stereoscopic depth perception. The accepted view is that stereoscopic depth estimates are only relative to the fixation point and that independent information from an extraretinal source is needed to scale for absolute or egocentric distance. Recently, however, theoretical computations have shown that egocentric distance can be estimated directly from vertical disparities without recourse to extraretinal sources. There has been little impetus to follow up these computations with experimental observations, because the vertical disparities that normally occur between the images in the two eyes have always been regarded as being too small to be of significance for visual perception and because experiments have consistently shown that our conscious appreciation of egocentric distance is rather crude and unreliable. Nevertheless, the veridicality of stereoscopic depth constancy indicates that accurate distance information is available to the visual system and that the information about egocentric distance and horizontal disparity are processed together so as to continually recalibrate the horizontal disparity values for different absolute distances. Computations show that the recalibration can be based directly on vertical disparities without the need for any intervening estimates of absolute distance. This may partly explain the relative crudity of our conscious appreciation of egocentric distance. From published data it has been possible to calculate the magnitude of the vertical disparities that the human visual system must be able to discriminate in order for depth constancy to have the observed level of veridicality. From published data on the induced effect it has also been possible to calculate the threshold values for the detection of vertical disparities by the visual system. These threshold values are smaller than those needed to provide for the recalibration of the horizontal disparities in the interests of veridical depth constancy. An outline is given of the known properties of the binocularly activated cells in the striate cortex that are able to discriminate and assess the vertical disparities. Experiments are proposed that should validate, or otherwise, the concepts put forward in this paper.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the Royal Society of London Series B-Containing Papers of Abiological Character
Proceedings of the Royal Society of London Series B-Containing Papers of Abiological Character 生命科学, 发育生物学与生殖生物学, 发育生物学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信