使用红外光谱成像的乳腺癌组织病理学:仪器配置的影响

Shachi Mittal , Tomasz P. Wrobel , Michael Walsh , Andre Kajdacsy-Balla , Rohit Bhargava
{"title":"使用红外光谱成像的乳腺癌组织病理学:仪器配置的影响","authors":"Shachi Mittal ,&nbsp;Tomasz P. Wrobel ,&nbsp;Michael Walsh ,&nbsp;Andre Kajdacsy-Balla ,&nbsp;Rohit Bhargava","doi":"10.1016/j.clispe.2021.100006","DOIUrl":null,"url":null,"abstract":"<div><p>Digital analysis of cancer specimens using spectroscopic imaging coupled to machine learning is an emerging area that links spatially localized spectral signatures to tissue structure and disease. In this study, we examine the role of spatial-spectral tradeoffs in infrared spectroscopic imaging configurations for probing tumors and the associated microenvironment profiles at different levels of model complexity. We image breast tissue using standard and high-definition Fourier Transform Infrared (FT-IR) imaging and systematically examine the localization, spectral origins, and utility of data for classification. Results demonstrate that higher spatial detail provides high sensitivity and specificity of tissue segmentation, despite the increased subcellular variability. High definition imaging also allows accurate analysis of complex, multiclass models of breast tissue without compromising accuracy. A comparison of results also highlights the key differences in the data distributions and classification performance across modalities to better guide decision making for acquiring and analyzing IR imaging data for specific histopathological models.</p></div>","PeriodicalId":100277,"journal":{"name":"Clinical Spectroscopy","volume":"3 ","pages":"Article 100006"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.clispe.2021.100006","citationCount":"0","resultStr":"{\"title\":\"Breast cancer histopathology using infrared spectroscopic imaging: The impact of instrumental configurations\",\"authors\":\"Shachi Mittal ,&nbsp;Tomasz P. Wrobel ,&nbsp;Michael Walsh ,&nbsp;Andre Kajdacsy-Balla ,&nbsp;Rohit Bhargava\",\"doi\":\"10.1016/j.clispe.2021.100006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Digital analysis of cancer specimens using spectroscopic imaging coupled to machine learning is an emerging area that links spatially localized spectral signatures to tissue structure and disease. In this study, we examine the role of spatial-spectral tradeoffs in infrared spectroscopic imaging configurations for probing tumors and the associated microenvironment profiles at different levels of model complexity. We image breast tissue using standard and high-definition Fourier Transform Infrared (FT-IR) imaging and systematically examine the localization, spectral origins, and utility of data for classification. Results demonstrate that higher spatial detail provides high sensitivity and specificity of tissue segmentation, despite the increased subcellular variability. High definition imaging also allows accurate analysis of complex, multiclass models of breast tissue without compromising accuracy. A comparison of results also highlights the key differences in the data distributions and classification performance across modalities to better guide decision making for acquiring and analyzing IR imaging data for specific histopathological models.</p></div>\",\"PeriodicalId\":100277,\"journal\":{\"name\":\"Clinical Spectroscopy\",\"volume\":\"3 \",\"pages\":\"Article 100006\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.clispe.2021.100006\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Spectroscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666054721000016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666054721000016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用光谱成像与机器学习相结合对癌症标本进行数字分析是一个新兴领域,它将空间定位的光谱特征与组织结构和疾病联系起来。在这项研究中,我们研究了空间光谱权衡在红外光谱成像配置中的作用,用于探测肿瘤和不同模型复杂性水平下的相关微环境剖面。我们使用标准和高清傅里叶变换红外(FT-IR)成像对乳腺组织进行成像,并系统地检查定位,光谱起源和分类数据的效用。结果表明,尽管亚细胞变异性增加,但更高的空间细节提供了高灵敏度和特异性的组织分割。高清晰度成像还允许在不影响准确性的情况下,对复杂的、多层次的乳腺组织模型进行准确分析。结果的比较还强调了不同模式下数据分布和分类性能的关键差异,以更好地指导获取和分析特定组织病理模型的红外成像数据的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Breast cancer histopathology using infrared spectroscopic imaging: The impact of instrumental configurations

Breast cancer histopathology using infrared spectroscopic imaging: The impact of instrumental configurations

Digital analysis of cancer specimens using spectroscopic imaging coupled to machine learning is an emerging area that links spatially localized spectral signatures to tissue structure and disease. In this study, we examine the role of spatial-spectral tradeoffs in infrared spectroscopic imaging configurations for probing tumors and the associated microenvironment profiles at different levels of model complexity. We image breast tissue using standard and high-definition Fourier Transform Infrared (FT-IR) imaging and systematically examine the localization, spectral origins, and utility of data for classification. Results demonstrate that higher spatial detail provides high sensitivity and specificity of tissue segmentation, despite the increased subcellular variability. High definition imaging also allows accurate analysis of complex, multiclass models of breast tissue without compromising accuracy. A comparison of results also highlights the key differences in the data distributions and classification performance across modalities to better guide decision making for acquiring and analyzing IR imaging data for specific histopathological models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信