锰基氧化物阴极的相位工程调制用于构建超稳定的钠存储

IF 14 1区 化学 Q1 CHEMISTRY, APPLIED
Quanqing Zhao , Ruru Wang , Ming Gao , Bolin Liu , Jianfeng Jia , Haishun Wu , Youqi Zhu , Chuanbao Cao
{"title":"锰基氧化物阴极的相位工程调制用于构建超稳定的钠存储","authors":"Quanqing Zhao ,&nbsp;Ruru Wang ,&nbsp;Ming Gao ,&nbsp;Bolin Liu ,&nbsp;Jianfeng Jia ,&nbsp;Haishun Wu ,&nbsp;Youqi Zhu ,&nbsp;Chuanbao Cao","doi":"10.1016/j.jechem.2023.09.026","DOIUrl":null,"url":null,"abstract":"<div><p>The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries. Nevertheless, the broad application prospect is obstructed by the sluggish Na<sup>+</sup> kinetics and the phase transitions upon cycling. Herein, we establish the thermodynamically stable phase diagram of various Mn-based oxide composites precisely controlled by sodium content tailoring strategy coupling with co-doping and solid-state reaction. The chemical environment of the P2/P'3 and P2/P3 biphasic composites indicate that the charge compensation mechanism stems from the cooperative contribution of anions and cations. Benefiting from the no phase transition to scavenge the structure strain, P2/P'3 electrode can deliver long cycling stability (capacity retention of 73.8 % after 1000 cycles at 10 C) and outstanding rate properties (the discharge capacity of 84.08 mA h g<sup>−1</sup> at 20 C) than P2/P3 electrode. Furthermore, the DFT calculation demonstrates that the introducing novel P'3 phase can significantly regulate the Na<sup>+</sup> reaction dynamics and modify the local electron configuration of Mn. The effective phase engineering can provide a reference for designing other high-performance electrode materials for Na-ion batteries.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"88 ","pages":"Pages 421-427"},"PeriodicalIF":14.0000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase-engineering modulation of Mn-based oxide cathode for constructing super-stable sodium storage\",\"authors\":\"Quanqing Zhao ,&nbsp;Ruru Wang ,&nbsp;Ming Gao ,&nbsp;Bolin Liu ,&nbsp;Jianfeng Jia ,&nbsp;Haishun Wu ,&nbsp;Youqi Zhu ,&nbsp;Chuanbao Cao\",\"doi\":\"10.1016/j.jechem.2023.09.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries. Nevertheless, the broad application prospect is obstructed by the sluggish Na<sup>+</sup> kinetics and the phase transitions upon cycling. Herein, we establish the thermodynamically stable phase diagram of various Mn-based oxide composites precisely controlled by sodium content tailoring strategy coupling with co-doping and solid-state reaction. The chemical environment of the P2/P'3 and P2/P3 biphasic composites indicate that the charge compensation mechanism stems from the cooperative contribution of anions and cations. Benefiting from the no phase transition to scavenge the structure strain, P2/P'3 electrode can deliver long cycling stability (capacity retention of 73.8 % after 1000 cycles at 10 C) and outstanding rate properties (the discharge capacity of 84.08 mA h g<sup>−1</sup> at 20 C) than P2/P3 electrode. Furthermore, the DFT calculation demonstrates that the introducing novel P'3 phase can significantly regulate the Na<sup>+</sup> reaction dynamics and modify the local electron configuration of Mn. The effective phase engineering can provide a reference for designing other high-performance electrode materials for Na-ion batteries.</p></div>\",\"PeriodicalId\":67498,\"journal\":{\"name\":\"能源化学\",\"volume\":\"88 \",\"pages\":\"Pages 421-427\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"能源化学\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495623005417\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623005417","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

具有丰富晶相结构和组分多样性的锰基氧化物阴极可以为钠离子电池提供优良的化学结构。然而,Na+动力学缓慢和循环后的相变阻碍了其广阔的应用前景。在此,我们建立了钠含量裁剪策略耦合共掺杂和固相反应精确控制的各种锰基氧化物复合材料的热力学稳定相图。P2/P′3和P2/P3双相复合材料的化学环境表明,电荷补偿机制源于阴离子和阳离子的协同贡献。与P2/P3电极相比,P2/P’3电极具有较长的循环稳定性(在10℃下循环1000次后容量保持率为73.8%)和优异的倍率性能(在20℃下放电容量为84.08 mA h g−1)。此外,DFT计算表明,引入新的P′3相可以显著调节Na+反应动力学并改变Mn的局域电子组态。有效相位工程可为其他高性能钠离子电池电极材料的设计提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Phase-engineering modulation of Mn-based oxide cathode for constructing super-stable sodium storage

Phase-engineering modulation of Mn-based oxide cathode for constructing super-stable sodium storage

The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries. Nevertheless, the broad application prospect is obstructed by the sluggish Na+ kinetics and the phase transitions upon cycling. Herein, we establish the thermodynamically stable phase diagram of various Mn-based oxide composites precisely controlled by sodium content tailoring strategy coupling with co-doping and solid-state reaction. The chemical environment of the P2/P'3 and P2/P3 biphasic composites indicate that the charge compensation mechanism stems from the cooperative contribution of anions and cations. Benefiting from the no phase transition to scavenge the structure strain, P2/P'3 electrode can deliver long cycling stability (capacity retention of 73.8 % after 1000 cycles at 10 C) and outstanding rate properties (the discharge capacity of 84.08 mA h g−1 at 20 C) than P2/P3 electrode. Furthermore, the DFT calculation demonstrates that the introducing novel P'3 phase can significantly regulate the Na+ reaction dynamics and modify the local electron configuration of Mn. The effective phase engineering can provide a reference for designing other high-performance electrode materials for Na-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
23.60
自引率
0.00%
发文量
2875
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信