{"title":"一种不可分型的流感嗜血杆菌(NTHi)在小鼠中引起copd样变化","authors":"","doi":"10.1016/j.rmedu.2008.08.012","DOIUrl":null,"url":null,"abstract":"<div><p>Nontypeable Haemophilus influenzae (NTHi) commonly colonizes the lower airways of patients with chronic obstructive pulmonary disease (COPD). Whether it contributes to COPD progression is unknown. Here, we determined which aspects of the COPD phenotype can be induced by repetitive exposure to NTHi products. Mice were exposed weekly to an aerosolized NTHi lysate, and inflammation was evaluated by measurement of cells and cytokines in bronchoalveolar lavage fluid (BALF) and immunohistochemical staining; structural changes were evaluated histochemically by periodic acid fluorescent Schiff's reagent, Masson's trichrome, and Picrosirius red staining; mucin gene expression was measured by quantitative RT-PCR; and the role of TNF-<em>α</em> was examined by transgenic airway overexpression and use of an inhibitory antibody. NTHi lysate induced rapid activation of NF-kappaB in airway cells and increases of inflammatory cytokines and neutrophils in BALF. Repetitive exposure induced infiltration of macrophages, CD8+ T cells, and B cells around airways and blood vessels, and collagen deposition in airway and alveolar walls, but airway mucin staining and gel-forming mucin transcripts were not increased. Transgenic overexpression of TNF-<em>α</em> caused BALF neutrophilia and inflammatory cell infiltration around airways, but not fibrosis, and TNF-<em>α</em> neutralization did not reduce BALF neutrophilia in response to NTHi lysate. In conclusion, NTHi products elicit airway inflammation in mice with a cellular and cytokine profile similar to that in COPD, and cause airway wall fibrosis but not mucous metaplasia. TNF-<em>α</em> is neither required for inflammatory cell recruitment nor sufficient for airway fibrosis. Colonization by NTHi may contribute to the pathogenesis of small airways disease in patients with COPD.</p><p>Reproduced with permission from the American Thoracic Society.</p></div>","PeriodicalId":101083,"journal":{"name":"Respiratory Medicine: COPD Update","volume":"4 4","pages":"Page 138"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.rmedu.2008.08.012","citationCount":"0","resultStr":"{\"title\":\"A non-typeable Haemophilus influenzae (NTHi) causes COPD-like changes in mice\",\"authors\":\"\",\"doi\":\"10.1016/j.rmedu.2008.08.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nontypeable Haemophilus influenzae (NTHi) commonly colonizes the lower airways of patients with chronic obstructive pulmonary disease (COPD). Whether it contributes to COPD progression is unknown. Here, we determined which aspects of the COPD phenotype can be induced by repetitive exposure to NTHi products. Mice were exposed weekly to an aerosolized NTHi lysate, and inflammation was evaluated by measurement of cells and cytokines in bronchoalveolar lavage fluid (BALF) and immunohistochemical staining; structural changes were evaluated histochemically by periodic acid fluorescent Schiff's reagent, Masson's trichrome, and Picrosirius red staining; mucin gene expression was measured by quantitative RT-PCR; and the role of TNF-<em>α</em> was examined by transgenic airway overexpression and use of an inhibitory antibody. NTHi lysate induced rapid activation of NF-kappaB in airway cells and increases of inflammatory cytokines and neutrophils in BALF. Repetitive exposure induced infiltration of macrophages, CD8+ T cells, and B cells around airways and blood vessels, and collagen deposition in airway and alveolar walls, but airway mucin staining and gel-forming mucin transcripts were not increased. Transgenic overexpression of TNF-<em>α</em> caused BALF neutrophilia and inflammatory cell infiltration around airways, but not fibrosis, and TNF-<em>α</em> neutralization did not reduce BALF neutrophilia in response to NTHi lysate. In conclusion, NTHi products elicit airway inflammation in mice with a cellular and cytokine profile similar to that in COPD, and cause airway wall fibrosis but not mucous metaplasia. TNF-<em>α</em> is neither required for inflammatory cell recruitment nor sufficient for airway fibrosis. Colonization by NTHi may contribute to the pathogenesis of small airways disease in patients with COPD.</p><p>Reproduced with permission from the American Thoracic Society.</p></div>\",\"PeriodicalId\":101083,\"journal\":{\"name\":\"Respiratory Medicine: COPD Update\",\"volume\":\"4 4\",\"pages\":\"Page 138\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.rmedu.2008.08.012\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Respiratory Medicine: COPD Update\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1745045408000919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Medicine: COPD Update","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1745045408000919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A non-typeable Haemophilus influenzae (NTHi) causes COPD-like changes in mice
Nontypeable Haemophilus influenzae (NTHi) commonly colonizes the lower airways of patients with chronic obstructive pulmonary disease (COPD). Whether it contributes to COPD progression is unknown. Here, we determined which aspects of the COPD phenotype can be induced by repetitive exposure to NTHi products. Mice were exposed weekly to an aerosolized NTHi lysate, and inflammation was evaluated by measurement of cells and cytokines in bronchoalveolar lavage fluid (BALF) and immunohistochemical staining; structural changes were evaluated histochemically by periodic acid fluorescent Schiff's reagent, Masson's trichrome, and Picrosirius red staining; mucin gene expression was measured by quantitative RT-PCR; and the role of TNF-α was examined by transgenic airway overexpression and use of an inhibitory antibody. NTHi lysate induced rapid activation of NF-kappaB in airway cells and increases of inflammatory cytokines and neutrophils in BALF. Repetitive exposure induced infiltration of macrophages, CD8+ T cells, and B cells around airways and blood vessels, and collagen deposition in airway and alveolar walls, but airway mucin staining and gel-forming mucin transcripts were not increased. Transgenic overexpression of TNF-α caused BALF neutrophilia and inflammatory cell infiltration around airways, but not fibrosis, and TNF-α neutralization did not reduce BALF neutrophilia in response to NTHi lysate. In conclusion, NTHi products elicit airway inflammation in mice with a cellular and cytokine profile similar to that in COPD, and cause airway wall fibrosis but not mucous metaplasia. TNF-α is neither required for inflammatory cell recruitment nor sufficient for airway fibrosis. Colonization by NTHi may contribute to the pathogenesis of small airways disease in patients with COPD.
Reproduced with permission from the American Thoracic Society.