M L Shibuya, T Miura, J R Lillehaug, R A Farley, J R Landolph
{"title":"化学诱导的抗瓦阿因C3H/10T1/2细胞耐(Na+,K+)- atp酶活性","authors":"M L Shibuya, T Miura, J R Lillehaug, R A Farley, J R Landolph","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>To further understand the molecular nature of changes leading to chemically induced ouabain resistance in C3H/10T1/2 Cl 8 (10T1/2) cells, we isolated plasma membranes from wild-type and ouabain-resistant (Ouar) 10T1/2 cells and characterized (Na,K)-ATPase activity in the plasma membrane fraction. (Na+,K+)-ATPase enzyme activity in membrane fractions extracted from wild-type 10T1/2 cells was inhibited in a concentration-dependent manner by ouabain and was completely inhibited by 2.4 mM ouabain. Lineweaver-Burke and Eisenthal/Cornish-Bowden analysis indicated that the inhibition was uncompetitive. Ten to 45% of (Na+,K+)-ATPase enzyme activity extracted from three Ouar 10T1/2 cell lines cultured in 1 mM ouabain was resistant to 2.4 mM ouabain, depending on the cell line. Resistance of (Na+,K+)-ATPase activity in the plasma membrane fraction of Ouar cells to inhibition by ouabain and resistance of cultured Ouar cells to the cytotoxicity of ouabain occurred over similar concentrations of ouabain (0.1-3mM). Two ouabain-resistant cell lines, Ouar MNNG Cl 2 and Ouar MCA Cl 16-7, demonstrated the same total (Na+,K+)-ATPase specific activity as 10T1/2 cells, but the fraction of Ouar enzyme activity increased (from 18 to 40% in MNNG Cl 2 cells and from 10 to 25% in Sp Ouar Cl 16 cells) when the cells were cultured in ouabain. Thermal denaturation profiles and pH dependence profiles of (Na+,K+)-ATPase activity in plasma membranes from wild-type and Ouar 10T1/2 cells were identical. A 3.9-kb (Na,K)-ATPase alpha subunit mRNA transcript was found in 10T1/2 cells, and in the Ouar MNNG Cl 2 cell line cultured in the presence or absence of ouabain. There was no amplification of the gene coding for the alpha subunit of (Na+,K+)-ATPase in the chemically induced Ouar MNNG Cl 2 cell line, whether this cell line was cultured in the presence or absence of ouabain. These studies provide further evidence that the Ouar phenotype of chemically induced and spontaneous Ouar 10T1/2 cell lines derives from Ouar (Na+,K+)-ATPase activity, and that this Ouar (Na+,K+)-ATPase activity increases further in some cell lines cultured in the presence of ouabain.</p>","PeriodicalId":77750,"journal":{"name":"Molecular toxicology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1989-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ouabain-resistant (Na+,K+)-ATPase enzyme activity in chemically induced ouabain-resistant C3H/10T1/2 cells.\",\"authors\":\"M L Shibuya, T Miura, J R Lillehaug, R A Farley, J R Landolph\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To further understand the molecular nature of changes leading to chemically induced ouabain resistance in C3H/10T1/2 Cl 8 (10T1/2) cells, we isolated plasma membranes from wild-type and ouabain-resistant (Ouar) 10T1/2 cells and characterized (Na,K)-ATPase activity in the plasma membrane fraction. (Na+,K+)-ATPase enzyme activity in membrane fractions extracted from wild-type 10T1/2 cells was inhibited in a concentration-dependent manner by ouabain and was completely inhibited by 2.4 mM ouabain. Lineweaver-Burke and Eisenthal/Cornish-Bowden analysis indicated that the inhibition was uncompetitive. Ten to 45% of (Na+,K+)-ATPase enzyme activity extracted from three Ouar 10T1/2 cell lines cultured in 1 mM ouabain was resistant to 2.4 mM ouabain, depending on the cell line. Resistance of (Na+,K+)-ATPase activity in the plasma membrane fraction of Ouar cells to inhibition by ouabain and resistance of cultured Ouar cells to the cytotoxicity of ouabain occurred over similar concentrations of ouabain (0.1-3mM). Two ouabain-resistant cell lines, Ouar MNNG Cl 2 and Ouar MCA Cl 16-7, demonstrated the same total (Na+,K+)-ATPase specific activity as 10T1/2 cells, but the fraction of Ouar enzyme activity increased (from 18 to 40% in MNNG Cl 2 cells and from 10 to 25% in Sp Ouar Cl 16 cells) when the cells were cultured in ouabain. Thermal denaturation profiles and pH dependence profiles of (Na+,K+)-ATPase activity in plasma membranes from wild-type and Ouar 10T1/2 cells were identical. A 3.9-kb (Na,K)-ATPase alpha subunit mRNA transcript was found in 10T1/2 cells, and in the Ouar MNNG Cl 2 cell line cultured in the presence or absence of ouabain. There was no amplification of the gene coding for the alpha subunit of (Na+,K+)-ATPase in the chemically induced Ouar MNNG Cl 2 cell line, whether this cell line was cultured in the presence or absence of ouabain. These studies provide further evidence that the Ouar phenotype of chemically induced and spontaneous Ouar 10T1/2 cell lines derives from Ouar (Na+,K+)-ATPase activity, and that this Ouar (Na+,K+)-ATPase activity increases further in some cell lines cultured in the presence of ouabain.</p>\",\"PeriodicalId\":77750,\"journal\":{\"name\":\"Molecular toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular toxicology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ouabain-resistant (Na+,K+)-ATPase enzyme activity in chemically induced ouabain-resistant C3H/10T1/2 cells.
To further understand the molecular nature of changes leading to chemically induced ouabain resistance in C3H/10T1/2 Cl 8 (10T1/2) cells, we isolated plasma membranes from wild-type and ouabain-resistant (Ouar) 10T1/2 cells and characterized (Na,K)-ATPase activity in the plasma membrane fraction. (Na+,K+)-ATPase enzyme activity in membrane fractions extracted from wild-type 10T1/2 cells was inhibited in a concentration-dependent manner by ouabain and was completely inhibited by 2.4 mM ouabain. Lineweaver-Burke and Eisenthal/Cornish-Bowden analysis indicated that the inhibition was uncompetitive. Ten to 45% of (Na+,K+)-ATPase enzyme activity extracted from three Ouar 10T1/2 cell lines cultured in 1 mM ouabain was resistant to 2.4 mM ouabain, depending on the cell line. Resistance of (Na+,K+)-ATPase activity in the plasma membrane fraction of Ouar cells to inhibition by ouabain and resistance of cultured Ouar cells to the cytotoxicity of ouabain occurred over similar concentrations of ouabain (0.1-3mM). Two ouabain-resistant cell lines, Ouar MNNG Cl 2 and Ouar MCA Cl 16-7, demonstrated the same total (Na+,K+)-ATPase specific activity as 10T1/2 cells, but the fraction of Ouar enzyme activity increased (from 18 to 40% in MNNG Cl 2 cells and from 10 to 25% in Sp Ouar Cl 16 cells) when the cells were cultured in ouabain. Thermal denaturation profiles and pH dependence profiles of (Na+,K+)-ATPase activity in plasma membranes from wild-type and Ouar 10T1/2 cells were identical. A 3.9-kb (Na,K)-ATPase alpha subunit mRNA transcript was found in 10T1/2 cells, and in the Ouar MNNG Cl 2 cell line cultured in the presence or absence of ouabain. There was no amplification of the gene coding for the alpha subunit of (Na+,K+)-ATPase in the chemically induced Ouar MNNG Cl 2 cell line, whether this cell line was cultured in the presence or absence of ouabain. These studies provide further evidence that the Ouar phenotype of chemically induced and spontaneous Ouar 10T1/2 cell lines derives from Ouar (Na+,K+)-ATPase activity, and that this Ouar (Na+,K+)-ATPase activity increases further in some cell lines cultured in the presence of ouabain.