{"title":"学习机床监督中具体的过程监控","authors":"T.W Rauber, M.M Barata, A.S Steiger-Garção","doi":"10.1016/0066-4138(94)90050-7","DOIUrl":null,"url":null,"abstract":"<div><p>This text describes our generic approaches to monitoring and prognostic, emphasizing the application of learning techniques, and focuses on model-free specific supervision entities that can be realized by a learning-from-examples method. All necessary tools for the generation of a supervised learning of a process situation classifier will be outlined. Statistical feature selection and inductive numerical learning constitute the basis for the proposed architecture. A particular supervised nonparametric learning method, developed in-house, the Q<sup>∗</sup> -algorithm will be presented. Practical experiments for the monitoring of a lathe are carried out.</p></div>","PeriodicalId":100097,"journal":{"name":"Annual Review in Automatic Programming","volume":"19 ","pages":"Pages 105-110"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0066-4138(94)90050-7","citationCount":"0","resultStr":"{\"title\":\"Learning of specific process monitors in machine tool supervision\",\"authors\":\"T.W Rauber, M.M Barata, A.S Steiger-Garção\",\"doi\":\"10.1016/0066-4138(94)90050-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This text describes our generic approaches to monitoring and prognostic, emphasizing the application of learning techniques, and focuses on model-free specific supervision entities that can be realized by a learning-from-examples method. All necessary tools for the generation of a supervised learning of a process situation classifier will be outlined. Statistical feature selection and inductive numerical learning constitute the basis for the proposed architecture. A particular supervised nonparametric learning method, developed in-house, the Q<sup>∗</sup> -algorithm will be presented. Practical experiments for the monitoring of a lathe are carried out.</p></div>\",\"PeriodicalId\":100097,\"journal\":{\"name\":\"Annual Review in Automatic Programming\",\"volume\":\"19 \",\"pages\":\"Pages 105-110\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0066-4138(94)90050-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review in Automatic Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0066413894900507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review in Automatic Programming","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0066413894900507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning of specific process monitors in machine tool supervision
This text describes our generic approaches to monitoring and prognostic, emphasizing the application of learning techniques, and focuses on model-free specific supervision entities that can be realized by a learning-from-examples method. All necessary tools for the generation of a supervised learning of a process situation classifier will be outlined. Statistical feature selection and inductive numerical learning constitute the basis for the proposed architecture. A particular supervised nonparametric learning method, developed in-house, the Q∗ -algorithm will be presented. Practical experiments for the monitoring of a lathe are carried out.