学习机床监督中具体的过程监控

T.W Rauber, M.M Barata, A.S Steiger-Garção
{"title":"学习机床监督中具体的过程监控","authors":"T.W Rauber,&nbsp;M.M Barata,&nbsp;A.S Steiger-Garção","doi":"10.1016/0066-4138(94)90050-7","DOIUrl":null,"url":null,"abstract":"<div><p>This text describes our generic approaches to monitoring and prognostic, emphasizing the application of learning techniques, and focuses on model-free specific supervision entities that can be realized by a learning-from-examples method. All necessary tools for the generation of a supervised learning of a process situation classifier will be outlined. Statistical feature selection and inductive numerical learning constitute the basis for the proposed architecture. A particular supervised nonparametric learning method, developed in-house, the Q<sup>∗</sup> -algorithm will be presented. Practical experiments for the monitoring of a lathe are carried out.</p></div>","PeriodicalId":100097,"journal":{"name":"Annual Review in Automatic Programming","volume":"19 ","pages":"Pages 105-110"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0066-4138(94)90050-7","citationCount":"0","resultStr":"{\"title\":\"Learning of specific process monitors in machine tool supervision\",\"authors\":\"T.W Rauber,&nbsp;M.M Barata,&nbsp;A.S Steiger-Garção\",\"doi\":\"10.1016/0066-4138(94)90050-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This text describes our generic approaches to monitoring and prognostic, emphasizing the application of learning techniques, and focuses on model-free specific supervision entities that can be realized by a learning-from-examples method. All necessary tools for the generation of a supervised learning of a process situation classifier will be outlined. Statistical feature selection and inductive numerical learning constitute the basis for the proposed architecture. A particular supervised nonparametric learning method, developed in-house, the Q<sup>∗</sup> -algorithm will be presented. Practical experiments for the monitoring of a lathe are carried out.</p></div>\",\"PeriodicalId\":100097,\"journal\":{\"name\":\"Annual Review in Automatic Programming\",\"volume\":\"19 \",\"pages\":\"Pages 105-110\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0066-4138(94)90050-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review in Automatic Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0066413894900507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review in Automatic Programming","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0066413894900507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了我们监测和预测的一般方法,强调了学习技术的应用,并侧重于无模型的具体监督实体,可以通过从例子中学习的方法来实现。所有必要的工具,以生成一个过程情境分类器的监督学习将被概述。统计特征选择和归纳数值学习构成了该架构的基础。一个特殊的监督非参数学习方法,开发内部,Q * -算法将提出。对车床进行了实际监测实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning of specific process monitors in machine tool supervision

This text describes our generic approaches to monitoring and prognostic, emphasizing the application of learning techniques, and focuses on model-free specific supervision entities that can be realized by a learning-from-examples method. All necessary tools for the generation of a supervised learning of a process situation classifier will be outlined. Statistical feature selection and inductive numerical learning constitute the basis for the proposed architecture. A particular supervised nonparametric learning method, developed in-house, the Q -algorithm will be presented. Practical experiments for the monitoring of a lathe are carried out.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信